Cathy M. McLeod, Camille M. Hanes, Leah C. Fuller, Samjhana Bhandari, Hannah G. Lanthier, Robert W. Burgess, Joshua A. Weiner, Andrew M. Garrett
{"title":"A New Targeted Transgenic Mouse Line for the Study of Protocadherin γC4","authors":"Cathy M. McLeod, Camille M. Hanes, Leah C. Fuller, Samjhana Bhandari, Hannah G. Lanthier, Robert W. Burgess, Joshua A. Weiner, Andrew M. Garrett","doi":"10.1002/dvg.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The γ-protocadherins (γ-Pcdhs) comprise 22 homophilic cell adhesion molecule isoforms, expressed from the <i>Pcdhg</i> gene cluster via promoter choice mechanisms that serve many crucial functions during neural development. Emerging evidence supports the hypothesis that distinct isoforms have unique functions. The γC4 isoform, which is expressed from the <i>Pcdhgc4</i> promoter and includes its unique variable exon, is the sole γ-Pcdh isoform essential for the postnatal survival in mice. Here we describe a new mouse line (<i>C4-GFP</i>) in which <i>Pcdhgc4</i> with a C-terminal GFP tag is expressed from the <i>Rosa26</i> locus following excision of a lox-Stop-lox cassette by Cre recombinase. We report that restricted expression of this transgene in the nervous system using <i>Nestin-Cre</i> is sufficient to rescue the neonatal lethality of mice mutant for <i>Pcdhgc4</i>. This new line will be a vital tool for dissecting mechanisms underlying the functions of this essential cell adhesion molecule gene, mutations in which have been associated with neurodevelopmental disorders in humans.</p>\n </div>","PeriodicalId":12718,"journal":{"name":"genesis","volume":"63 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"genesis","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dvg.70010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The γ-protocadherins (γ-Pcdhs) comprise 22 homophilic cell adhesion molecule isoforms, expressed from the Pcdhg gene cluster via promoter choice mechanisms that serve many crucial functions during neural development. Emerging evidence supports the hypothesis that distinct isoforms have unique functions. The γC4 isoform, which is expressed from the Pcdhgc4 promoter and includes its unique variable exon, is the sole γ-Pcdh isoform essential for the postnatal survival in mice. Here we describe a new mouse line (C4-GFP) in which Pcdhgc4 with a C-terminal GFP tag is expressed from the Rosa26 locus following excision of a lox-Stop-lox cassette by Cre recombinase. We report that restricted expression of this transgene in the nervous system using Nestin-Cre is sufficient to rescue the neonatal lethality of mice mutant for Pcdhgc4. This new line will be a vital tool for dissecting mechanisms underlying the functions of this essential cell adhesion molecule gene, mutations in which have been associated with neurodevelopmental disorders in humans.
期刊介绍:
As of January 2000, Developmental Genetics was renamed and relaunched as genesis: The Journal of Genetics and Development, with a new scope and Editorial Board. The journal focuses on work that addresses the genetics of development and the fundamental mechanisms of embryological processes in animals and plants. With increased awareness of the interplay between genetics and evolutionary change, particularly during developmental processes, we encourage submission of manuscripts from all ecological niches. The expanded numbers of genomes for which sequencing is being completed will facilitate genetic and genomic examination of developmental issues, even if the model system does not fit the “classical genetic” mold. Therefore, we encourage submission of manuscripts from all species. Other areas of particular interest include: 1) the roles of epigenetics, microRNAs and environment on developmental processes; 2) genome-wide studies; 3) novel imaging techniques for the study of gene expression and cellular function; 4) comparative genetics and genomics and 5) animal models of human genetic and developmental disorders.
genesis presents reviews, full research articles, short research letters, and state-of-the-art technology reports that promote an understanding of the function of genes and the roles they play in complex developmental processes.