Nishat Jahan, Manoj Mandal, Imam Hossen Rakib, Md. Sakib Al Hasan, Emon Mia, Md. Arif Hossain, Noshin Tasnim Yana, Siddique Akber Ansari, Mehedi Hasan Bappi, Ali Mohamod Wasaf Hasan, Md Abu Sayeed, Muhammad Torequl Islam
{"title":"Assessment of Antidiarrheal Effect of Oleuropein Through µ-Oopioid Receptor Interaction Pathway: In Vivo and in Silico Studies","authors":"Nishat Jahan, Manoj Mandal, Imam Hossen Rakib, Md. Sakib Al Hasan, Emon Mia, Md. Arif Hossain, Noshin Tasnim Yana, Siddique Akber Ansari, Mehedi Hasan Bappi, Ali Mohamod Wasaf Hasan, Md Abu Sayeed, Muhammad Torequl Islam","doi":"10.1002/ddr.70064","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oleuropein (OLP), a compound predominantly found in olive leaves, has been known for its numerous biological activities, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its established therapeutic potential, its role in treating diarrhea has not been extensively explored. This study aimed to evaluate the antidiarrheal effects of OLP in an in vivo model and to investigate its molecular interactions using <i>in silico</i> docking studies, pharmacokinetic predictions, and toxicity analysis. In the in vivo study, castor oil was used to induce diarrhea in 3-day-old chicks, and the antidiarrheal effect of OLP was tested at doses of 10 and 20 mg/kg. The standard drug, loperamide (LOP) at 3 mg/kg, was used for comparison. The results showed that OLP at both doses significantly (<i>p</i> < 0.05) reduced diarrheal secretions and increased latency, with the 20 mg/kg dose demonstrating the most effective results. The combination of OLP (20 mg/kg) with LOP (3 mg/kg) further enhanced the antidiarrheal effect. In the <i>in silico</i> study, molecular docking revealed that both OLP and LOP exhibited strong binding affinities (BAs) to the key receptor, μ-opioid receptor associated with diarrhea, while OLP showed higher BA (‒8.9 kcal/mol) compared to LOP (‒8.7 kcal/mol). Pharmacokinetic analysis of OLP revealed favorable properties and toxicity studies revealed no acute toxicity, with an LD<sub>50</sub> of 2000 mg/kg. In conclusion, the findings suggest that OLP possesses significant antidiarrheal potential both in vivo and through receptor interaction, positioning it as a promising natural therapeutic agent for managing diarrhea. Further studies are warranted to fully elucidate its mechanisms of action and clinical applicability.</p>\n </div>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.70064","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oleuropein (OLP), a compound predominantly found in olive leaves, has been known for its numerous biological activities, including antioxidant, anti-inflammatory, and antimicrobial properties. Despite its established therapeutic potential, its role in treating diarrhea has not been extensively explored. This study aimed to evaluate the antidiarrheal effects of OLP in an in vivo model and to investigate its molecular interactions using in silico docking studies, pharmacokinetic predictions, and toxicity analysis. In the in vivo study, castor oil was used to induce diarrhea in 3-day-old chicks, and the antidiarrheal effect of OLP was tested at doses of 10 and 20 mg/kg. The standard drug, loperamide (LOP) at 3 mg/kg, was used for comparison. The results showed that OLP at both doses significantly (p < 0.05) reduced diarrheal secretions and increased latency, with the 20 mg/kg dose demonstrating the most effective results. The combination of OLP (20 mg/kg) with LOP (3 mg/kg) further enhanced the antidiarrheal effect. In the in silico study, molecular docking revealed that both OLP and LOP exhibited strong binding affinities (BAs) to the key receptor, μ-opioid receptor associated with diarrhea, while OLP showed higher BA (‒8.9 kcal/mol) compared to LOP (‒8.7 kcal/mol). Pharmacokinetic analysis of OLP revealed favorable properties and toxicity studies revealed no acute toxicity, with an LD50 of 2000 mg/kg. In conclusion, the findings suggest that OLP possesses significant antidiarrheal potential both in vivo and through receptor interaction, positioning it as a promising natural therapeutic agent for managing diarrhea. Further studies are warranted to fully elucidate its mechanisms of action and clinical applicability.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.