Global Sensitivity Analysis of a Novel Signaling Network for Heart Growth With Local IGF1 Production

IF 2.2 4区 医学 Q3 ENGINEERING, BIOMEDICAL International Journal for Numerical Methods in Biomedical Engineering Pub Date : 2025-02-09 DOI:10.1002/cnm.3906
Christian Bilas, Claus Kratzer, Arne Hinrichs, Andreas Maier, Stephen Wildhirt, Eckhard Wolf, Michael W. Gee
{"title":"Global Sensitivity Analysis of a Novel Signaling Network for Heart Growth With Local IGF1 Production","authors":"Christian Bilas,&nbsp;Claus Kratzer,&nbsp;Arne Hinrichs,&nbsp;Andreas Maier,&nbsp;Stephen Wildhirt,&nbsp;Eckhard Wolf,&nbsp;Michael W. Gee","doi":"10.1002/cnm.3906","DOIUrl":null,"url":null,"abstract":"<p>Signaling networks can be used to describe the dynamic interplay of hormonal and mechanical factors that regulate heart growth. However, a qualitative analysis of signaling networks is often difficult due to their complexity and nonlinear behavior. In this work, a global sensitivity analysis of signaling networks is conducted to determine the most influential factors for heart growth over a range of model inputs. Furthermore, the local production of the hormone insulin-like growth factor 1 (IGF1) in response to high mechanical stretches as recently described by Zaman et al.(<i>Immunity</i>, 54, 2057) and Wong et al.(<i>Immunity</i>, 54, 2072) is incorporated. The computational results show that this increases the influence of mechanical stretch on heart growth significantly. Further key influential factors are the hormones norepinephrine (NE), angiotensin II (AngII), and globally produced IGF1 (g-IGF1). Our sensitivity analysis indicates that the novel consideration of local IGF1 (l-IGF1) production has to be considered in signaling networks for heart growth.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"41 2","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnm.3906","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3906","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Signaling networks can be used to describe the dynamic interplay of hormonal and mechanical factors that regulate heart growth. However, a qualitative analysis of signaling networks is often difficult due to their complexity and nonlinear behavior. In this work, a global sensitivity analysis of signaling networks is conducted to determine the most influential factors for heart growth over a range of model inputs. Furthermore, the local production of the hormone insulin-like growth factor 1 (IGF1) in response to high mechanical stretches as recently described by Zaman et al.(Immunity, 54, 2057) and Wong et al.(Immunity, 54, 2072) is incorporated. The computational results show that this increases the influence of mechanical stretch on heart growth significantly. Further key influential factors are the hormones norepinephrine (NE), angiotensin II (AngII), and globally produced IGF1 (g-IGF1). Our sensitivity analysis indicates that the novel consideration of local IGF1 (l-IGF1) production has to be considered in signaling networks for heart growth.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal for Numerical Methods in Biomedical Engineering
International Journal for Numerical Methods in Biomedical Engineering ENGINEERING, BIOMEDICAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.50
自引率
9.50%
发文量
103
审稿时长
3 months
期刊介绍: All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.
期刊最新文献
A Novel Method to Calibrate Spring-Network Cell Model in Hydrodynamic Flow Global Sensitivity Analysis of a Novel Signaling Network for Heart Growth With Local IGF1 Production Numerical Simulation of Fluid–Structure Interaction in Axillary Artery Venoarterial Extracorporeal Membrane Oxygenation for Heart Failure Patients Issue Information Coupled Finite Element Model of the Middle and Inner Ear as Virtual Test Environment for Stapes Surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1