Porphyromonas gingivalis and Its Outer Membrane Vesicles Induce Neuroinflammation in Mice Through Distinct Mechanisms

IF 3.1 4区 医学 Q3 IMMUNOLOGY Immunity, Inflammation and Disease Pub Date : 2025-02-11 DOI:10.1002/iid3.70135
Yu Qiu, Yueyang Zhao, Guiqiong He, Deqin Yang
{"title":"Porphyromonas gingivalis and Its Outer Membrane Vesicles Induce Neuroinflammation in Mice Through Distinct Mechanisms","authors":"Yu Qiu,&nbsp;Yueyang Zhao,&nbsp;Guiqiong He,&nbsp;Deqin Yang","doi":"10.1002/iid3.70135","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Alzheimer's disease (AD) is the most common chronic neurodegenerative disorder, with neuroinflammation playing an important role in its progression to become a major research focus. The role of <i>Porphyromonas gingivalis</i> (<i>Pg</i>) and its outer membrane vesicles (<i>Pg</i> OMVs) in AD development is uncertain, particularly regarding their effects on neuroinflammation.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The cognition of mice injected with <i>Pg</i>, <i>Pg</i> OMVs, or PBS via the tail vein was assessed by the Morris water maze test. Pathological changes in the mouse brain were analyzed via immunohistochemistry, immunofluorescence and hematoxylin‒eosin (H&amp;E) staining, and the ultrastructure of the hippocampus was observed via transmission electron microscopy (TEM). Plasma levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay (ELISA). Protein levels of brain inflammatory factor, occludin, and NLRP3 inflammasome-related proteins were assessed by western blotting.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Memory impairment; notable neuroinflammation, including astrocyte and microglial activation; and elevated protein levels of IL-1β, TNF-α, and IL-6 in the hippocampus were detected in the <i>Pg</i> and <i>Pg</i> OMV groups. However, <i>Pg</i> induced weight loss and systemic inflammation, such as splenomegaly and increased IL-1β and TNF-α levels in plasma, whereas <i>Pg</i> OMVs had minimal impact. In addition, <i>Pg</i> induced more pronounced activation of the NLRP3 inflammasome compared to <i>Pg</i> OMVs. In contrast, only the <i>Pg</i> OMV group exhibited blood−brain barrier (BBB) disruption characterized by reduced integrity of tight junctions and lower levels of occludin protein.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p><i>Pg</i> is associated with a significant immune response and systemic inflammation, which in turn exacerbates neuroinflammation via activating NLRP3 inflammasome. However, <i>Pg</i> OMVs might elude the systemic immune response and disrupt tight junctions, thereby entering the brain and directly triggering neuroinflammation.</p>\n </section>\n </div>","PeriodicalId":13289,"journal":{"name":"Immunity, Inflammation and Disease","volume":"13 2","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iid3.70135","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity, Inflammation and Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iid3.70135","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Alzheimer's disease (AD) is the most common chronic neurodegenerative disorder, with neuroinflammation playing an important role in its progression to become a major research focus. The role of Porphyromonas gingivalis (Pg) and its outer membrane vesicles (Pg OMVs) in AD development is uncertain, particularly regarding their effects on neuroinflammation.

Methods

The cognition of mice injected with Pg, Pg OMVs, or PBS via the tail vein was assessed by the Morris water maze test. Pathological changes in the mouse brain were analyzed via immunohistochemistry, immunofluorescence and hematoxylin‒eosin (H&E) staining, and the ultrastructure of the hippocampus was observed via transmission electron microscopy (TEM). Plasma levels of inflammatory factors were assessed by enzyme-linked immunosorbent assay (ELISA). Protein levels of brain inflammatory factor, occludin, and NLRP3 inflammasome-related proteins were assessed by western blotting.

Results

Memory impairment; notable neuroinflammation, including astrocyte and microglial activation; and elevated protein levels of IL-1β, TNF-α, and IL-6 in the hippocampus were detected in the Pg and Pg OMV groups. However, Pg induced weight loss and systemic inflammation, such as splenomegaly and increased IL-1β and TNF-α levels in plasma, whereas Pg OMVs had minimal impact. In addition, Pg induced more pronounced activation of the NLRP3 inflammasome compared to Pg OMVs. In contrast, only the Pg OMV group exhibited blood−brain barrier (BBB) disruption characterized by reduced integrity of tight junctions and lower levels of occludin protein.

Conclusions

Pg is associated with a significant immune response and systemic inflammation, which in turn exacerbates neuroinflammation via activating NLRP3 inflammasome. However, Pg OMVs might elude the systemic immune response and disrupt tight junctions, thereby entering the brain and directly triggering neuroinflammation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunity, Inflammation and Disease
Immunity, Inflammation and Disease Medicine-Immunology and Allergy
CiteScore
3.60
自引率
0.00%
发文量
146
审稿时长
8 weeks
期刊介绍: Immunity, Inflammation and Disease is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research across the broad field of immunology. Immunity, Inflammation and Disease gives rapid consideration to papers in all areas of clinical and basic research. The journal is indexed in Medline and the Science Citation Index Expanded (part of Web of Science), among others. It welcomes original work that enhances the understanding of immunology in areas including: • cellular and molecular immunology • clinical immunology • allergy • immunochemistry • immunogenetics • immune signalling • immune development • imaging • mathematical modelling • autoimmunity • transplantation immunology • cancer immunology
期刊最新文献
Construction of the Single-Cell Landscape of Hashimoto's Thyroiditis Tissue and Peripheral Blood by Single-Cell RNA Sequencing Porphyromonas gingivalis and Its Outer Membrane Vesicles Induce Neuroinflammation in Mice Through Distinct Mechanisms Jian Pi Hua Tan Fang Reverses Trastuzumab Resistance of HER2-Positive Gastric Cancer Through PI3K/AKT/mTOR Pathway: Integrating Network Pharmacology, Molecular Docking and Experimental Validation Role of miRNAs in Apoptosis Pathways of Immune Cells in Systemic Lupus Erythematosus Integrated Metabolomics and Proteomics Analysis of the Myocardium in a Mouse Model of Acute Viral Myocarditis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1