Defining the heterogeneous composition of Arabidopsis thylakoid membrane

IF 6.2 1区 生物学 Q1 PLANT SCIENCES The Plant Journal Pub Date : 2025-02-10 DOI:10.1111/tpj.17259
Andrea Trotta, Sanna Gunell, Azfar Ali Bajwa, Virpi Paakkarinen, Hiroaki Fujii, Eva-Mari Aro
{"title":"Defining the heterogeneous composition of Arabidopsis thylakoid membrane","authors":"Andrea Trotta,&nbsp;Sanna Gunell,&nbsp;Azfar Ali Bajwa,&nbsp;Virpi Paakkarinen,&nbsp;Hiroaki Fujii,&nbsp;Eva-Mari Aro","doi":"10.1111/tpj.17259","DOIUrl":null,"url":null,"abstract":"<p>Thylakoid membrane (TM) of land plants is organized into an appressed domain (grana), enriched in photosystem (PS) II and a non-appressed domain (stroma lamellae) enriched in PSI. This ultrastructure controls the exciton spillover from PSII to PSI. The bulky machinery required for the biogenesis and repair of TM protein complexes is located in the non-appressed membranes. Thus, the connecting domain (CD) between grana and stroma lamellae is the key player in both the structural and functional integrity of the photosynthetic machinery. In addition, both the grana domain and the stroma lamellae are highly curved at their edges due to the action of the CURVATURE1 (CURT1) proteins, forming a domain distinct from the CD, called the curvature. Here we elucidate the biochemical properties and proteome composition of different thylakoid domains. To this end, the TM of <i>Arabidopsis thaliana</i> (Arabidopsis), isolated both in the natural stacked configuration and in an artificially unstacked configuration to induce a homogeneous protein composition, was solubilized and fractionated, using the mild detergent digitonin (DIG). Using mass spectrometry-based proteomics, we characterize composition, distribution and interaction of proteins involved in TM function in grana, CD and stroma lamellae domains. We find that a subset of thylakoid protein complexes are readily solubilized into small vesicles by DIG and accumulate in a loose pellet (LP) together with CURT1. By combining an extensive biochemical and proteome characterization of the TM fractions we provide an optimized protocol and proteome maps that can be used as a basis for experimental design in photosynthesis research.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":"121 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/tpj.17259","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tpj.17259","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Thylakoid membrane (TM) of land plants is organized into an appressed domain (grana), enriched in photosystem (PS) II and a non-appressed domain (stroma lamellae) enriched in PSI. This ultrastructure controls the exciton spillover from PSII to PSI. The bulky machinery required for the biogenesis and repair of TM protein complexes is located in the non-appressed membranes. Thus, the connecting domain (CD) between grana and stroma lamellae is the key player in both the structural and functional integrity of the photosynthetic machinery. In addition, both the grana domain and the stroma lamellae are highly curved at their edges due to the action of the CURVATURE1 (CURT1) proteins, forming a domain distinct from the CD, called the curvature. Here we elucidate the biochemical properties and proteome composition of different thylakoid domains. To this end, the TM of Arabidopsis thaliana (Arabidopsis), isolated both in the natural stacked configuration and in an artificially unstacked configuration to induce a homogeneous protein composition, was solubilized and fractionated, using the mild detergent digitonin (DIG). Using mass spectrometry-based proteomics, we characterize composition, distribution and interaction of proteins involved in TM function in grana, CD and stroma lamellae domains. We find that a subset of thylakoid protein complexes are readily solubilized into small vesicles by DIG and accumulate in a loose pellet (LP) together with CURT1. By combining an extensive biochemical and proteome characterization of the TM fractions we provide an optimized protocol and proteome maps that can be used as a basis for experimental design in photosynthesis research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Plant Journal
The Plant Journal 生物-植物科学
CiteScore
13.10
自引率
4.20%
发文量
415
审稿时长
2.3 months
期刊介绍: Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community. Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.
期刊最新文献
Posttranslational regulation of plant membrane transporters Genetic dissection of internode length confers improvement for ideal plant architecture in maize Haplotype-resolved genome and population genomics provide insights into dioscin biosynthesis and evolutionary history of the medicinal species Dioscorea nipponica DREPP protein StPCaP1 facilitates the cell-to-cell movement of Potato virus Y and Potato virus S by inhibiting callose deposition at plasmodesmata Identification of UDP-glucosyltransferase involved in the biosynthesis of phloridzin in Gossypium hirsutum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1