Developing approaches to incorporate donor-lung computed tomography images into machine learning models to predict severe primary graft dysfunction after lung transplantation

IF 8.2 2区 医学 Q1 SURGERY American Journal of Transplantation Pub Date : 2025-02-07 DOI:10.1016/j.ajt.2025.01.039
Weiwei Ma , Inez Oh , Yixuan Luo , Sayantan Kumar , Aditi Gupta , Albert M. Lai , Varun Puri , Daniel Kreisel , Andrew E. Gelman , Ruben Nava , Chad A. Witt , Derek E. Byers , Laura Halverson , Rodrigo Vazquez-Guillamet , Philip R.O. Payne , Aristeidis Sotiras , Hao Lu , Khalid Niazi , Metin N. Gurcan , Ramsey R. Hachem , Andrew P. Michelson
{"title":"Developing approaches to incorporate donor-lung computed tomography images into machine learning models to predict severe primary graft dysfunction after lung transplantation","authors":"Weiwei Ma ,&nbsp;Inez Oh ,&nbsp;Yixuan Luo ,&nbsp;Sayantan Kumar ,&nbsp;Aditi Gupta ,&nbsp;Albert M. Lai ,&nbsp;Varun Puri ,&nbsp;Daniel Kreisel ,&nbsp;Andrew E. Gelman ,&nbsp;Ruben Nava ,&nbsp;Chad A. Witt ,&nbsp;Derek E. Byers ,&nbsp;Laura Halverson ,&nbsp;Rodrigo Vazquez-Guillamet ,&nbsp;Philip R.O. Payne ,&nbsp;Aristeidis Sotiras ,&nbsp;Hao Lu ,&nbsp;Khalid Niazi ,&nbsp;Metin N. Gurcan ,&nbsp;Ramsey R. Hachem ,&nbsp;Andrew P. Michelson","doi":"10.1016/j.ajt.2025.01.039","DOIUrl":null,"url":null,"abstract":"<div><div>Primary graft dysfunction (PGD) is a common complication after lung transplantation associated with poor outcomes. Although risk factors have been identified, the complex interactions between clinical variables affecting PGD risk are not well understood, which can complicate decisions about donor-lung acceptance. Previously, we developed a machine learning model to predict grade 3 PGD using donor and recipient electronic health record data, but it lacked granular information from donor-lung computed tomography (CT) scans, which are routinely assessed during offer review. In this study, we used a gated approach to determine optimal methods for analyzing donor-lung CT scans among patients receiving first-time, bilateral lung transplants at a single center over 10 years. We assessed 4 computer vision approaches and fused the best with electronic health record data at 3 points in the machine learning process. A total of 160 patients had donor-lung CT scans for analysis. The best imaging-only approach employed a 3D ResNet model, yielding median (interquartile range) areas under the receiver operating characteristic and precision-recall curves of 0.63 (0.49-0.72) and 0.48 (0.35-0.6), respectively. Combining imaging with clinical data using late fusion provided the highest performance, with median areas under the receiver operating characteristic and precision-recall curves of 0.74 (0.59-0.85) and 0.61 (0.47-0.72), respectively.</div></div>","PeriodicalId":123,"journal":{"name":"American Journal of Transplantation","volume":"25 6","pages":"Pages 1339-1349"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Transplantation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1600613525000450","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

Abstract

Primary graft dysfunction (PGD) is a common complication after lung transplantation associated with poor outcomes. Although risk factors have been identified, the complex interactions between clinical variables affecting PGD risk are not well understood, which can complicate decisions about donor-lung acceptance. Previously, we developed a machine learning model to predict grade 3 PGD using donor and recipient electronic health record data, but it lacked granular information from donor-lung computed tomography (CT) scans, which are routinely assessed during offer review. In this study, we used a gated approach to determine optimal methods for analyzing donor-lung CT scans among patients receiving first-time, bilateral lung transplants at a single center over 10 years. We assessed 4 computer vision approaches and fused the best with electronic health record data at 3 points in the machine learning process. A total of 160 patients had donor-lung CT scans for analysis. The best imaging-only approach employed a 3D ResNet model, yielding median (interquartile range) areas under the receiver operating characteristic and precision-recall curves of 0.63 (0.49-0.72) and 0.48 (0.35-0.6), respectively. Combining imaging with clinical data using late fusion provided the highest performance, with median areas under the receiver operating characteristic and precision-recall curves of 0.74 (0.59-0.85) and 0.61 (0.47-0.72), respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发展将供体肺CT图像纳入机器学习模型以预测肺移植后严重的原发性移植物功能障碍的方法。
原发性移植物功能障碍(PGD)是肺移植术后与不良预后相关的常见并发症。虽然已经确定了危险因素,但影响PGD风险的临床变量之间复杂的相互作用尚未得到很好的理解,这可能使供体肺接受的决定复杂化。之前,我们开发了一种机器学习(ML)模型,使用供体和受体电子健康记录(EHR)数据预测3级PGD,但它缺乏供体肺部CT扫描的颗粒信息,这些信息在offer审查期间通常进行评估。在这项研究中,我们使用了一种门控方法来确定分析在单一中心接受首次双侧肺移植的患者超过10年的供体肺CT扫描的最佳方法。我们评估了四种计算机视觉方法,并在ML过程的三个点上将最佳方法与EHR数据融合在一起。共有160名患者进行了供肺CT扫描进行分析。最佳成像方法采用3D ResNet模型,平均AUROC和AUPRC分别为0.63(0.49 - 0.72)和0.48(0.35 - 0.6)。影像与临床资料结合使用晚期融合提供了最高的表现,AUROC和AUPRC的中位数分别为0.74(0.59 - 0.85)和0.61(0.47 - 0.72)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
18.70
自引率
4.50%
发文量
346
审稿时长
26 days
期刊介绍: The American Journal of Transplantation is a leading journal in the field of transplantation. It serves as a forum for debate and reassessment, an agent of change, and a major platform for promoting understanding, improving results, and advancing science. Published monthly, it provides an essential resource for researchers and clinicians worldwide. The journal publishes original articles, case reports, invited reviews, letters to the editor, critical reviews, news features, consensus documents, and guidelines over 12 issues a year. It covers all major subject areas in transplantation, including thoracic (heart, lung), abdominal (kidney, liver, pancreas, islets), tissue and stem cell transplantation, organ and tissue donation and preservation, tissue injury, repair, inflammation, and aging, histocompatibility, drugs and pharmacology, graft survival, and prevention of graft dysfunction and failure. It also explores ethical and social issues in the field.
期刊最新文献
Spiroplasma infection complicated by macrophage activation syndrome and fulminant hepatitis in a kidney transplanted patient. Anti-AT1R Autoantibodies in pancreas transplantation Rewriting the rule of alloimmunity: a blueprint for B cell-driven transplant outcomes. Pediatric Cardiac Xenotransplantation: A Cautious Approach as Bridge to Allotransplantation. Occult rat Hepatitis E Virus Infection as a Cause of Cirrhosis and Post-Transplant Recurrence: Insights into the Role of Metagenomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1