Unveiling tolerance mechanisms in pepper to combined low-temperature and low-light stress: a physiological and transcriptomic approach.

IF 4.3 2区 生物学 Q1 PLANT SCIENCES BMC Plant Biology Pub Date : 2025-02-10 DOI:10.1186/s12870-025-06169-7
Jie Zhang, Hamza Sohail, Xuewen Xu, Yongtai Zhang, Yongji Zhang, Yibo Chen
{"title":"Unveiling tolerance mechanisms in pepper to combined low-temperature and low-light stress: a physiological and transcriptomic approach.","authors":"Jie Zhang, Hamza Sohail, Xuewen Xu, Yongtai Zhang, Yongji Zhang, Yibo Chen","doi":"10.1186/s12870-025-06169-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pepper (Capsicum annuum L.) is a vegetable crop of significant economic importance, but its yield and quality are severely affected by the combined stress of low temperature and low light (LL), particularly in greenhouse environments. Despite this, the physiological and molecular mechanisms underlying pepper's response to LL stress remain poorly understood. In this study, we conducted physiological and transcriptomic analyses on two pepper genotypes: Y2, a LL-sensitive genotype, and Y425, a LL-tolerant genotype. These genotypes were subjected to LL stress conditions (10 °C/5°C, 100 µmol m⁻²s⁻¹) and control (CK) conditions (28 °C/18°C, 300 µmol m⁻²s⁻¹).</p><p><strong>Results: </strong>Three days after treatment, the phenotypes of the two pepper genotypes began to show clear distinctions, with Y425 seedlings exhibiting greater root length, shoot fresh weight, and root fresh weight compared to Y2. Additionally, comparative transcriptome analysis of leaf samples from both genotypes identified a total of 13,190 differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis revealed that genes associated with photosynthesis, osmotic stress response, reactive oxygen species response, and other GO terms potentially contribute to LL tolerance. Moreover, three key pathways involved in the response to LL stress were identified: photosynthesis-antenna proteins, zeatin biosynthesis, and circadian rhythm pathways. The key DEGs in these pathways were expressed at higher levels in Y425 as compared with Y2. Furthermore, physiological indicators such as chlorophyll fluorescence parameters, chlorophyll content, osmoregulatory substances, and antioxidant enzyme activities decreased under LL stress; however, the reduction was significantly greater in Y2 compared to Y425, further validating the molecular findings from the transcriptome analysis.</p><p><strong>Conclusion: </strong>This study identified significant physiological and transcriptomic differences in two pepper genotypes under LL stress. It highlighted key pathways and provide novel insights into the molecular and physiological mechanisms of pepper's LL tolerance. These results emphasize the importance of optimizing greenhouse conditions for better crop productivity.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"171"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06169-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pepper (Capsicum annuum L.) is a vegetable crop of significant economic importance, but its yield and quality are severely affected by the combined stress of low temperature and low light (LL), particularly in greenhouse environments. Despite this, the physiological and molecular mechanisms underlying pepper's response to LL stress remain poorly understood. In this study, we conducted physiological and transcriptomic analyses on two pepper genotypes: Y2, a LL-sensitive genotype, and Y425, a LL-tolerant genotype. These genotypes were subjected to LL stress conditions (10 °C/5°C, 100 µmol m⁻²s⁻¹) and control (CK) conditions (28 °C/18°C, 300 µmol m⁻²s⁻¹).

Results: Three days after treatment, the phenotypes of the two pepper genotypes began to show clear distinctions, with Y425 seedlings exhibiting greater root length, shoot fresh weight, and root fresh weight compared to Y2. Additionally, comparative transcriptome analysis of leaf samples from both genotypes identified a total of 13,190 differentially expressed genes (DEGs). Gene Ontology (GO) enrichment analysis revealed that genes associated with photosynthesis, osmotic stress response, reactive oxygen species response, and other GO terms potentially contribute to LL tolerance. Moreover, three key pathways involved in the response to LL stress were identified: photosynthesis-antenna proteins, zeatin biosynthesis, and circadian rhythm pathways. The key DEGs in these pathways were expressed at higher levels in Y425 as compared with Y2. Furthermore, physiological indicators such as chlorophyll fluorescence parameters, chlorophyll content, osmoregulatory substances, and antioxidant enzyme activities decreased under LL stress; however, the reduction was significantly greater in Y2 compared to Y425, further validating the molecular findings from the transcriptome analysis.

Conclusion: This study identified significant physiological and transcriptomic differences in two pepper genotypes under LL stress. It highlighted key pathways and provide novel insights into the molecular and physiological mechanisms of pepper's LL tolerance. These results emphasize the importance of optimizing greenhouse conditions for better crop productivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
期刊最新文献
GhADT5 enhances alkali stress tolerance in cotton by regulating phenylalanine-derived flavonoid biosynthesis and antioxidant defense. How to utilize far-red photons effectively: substitution or supplementation with photosynthetically active radiation? A case study of greenhouse lettuce. Proteomics analysis revealed the activation and suppression of different host defense components challenged with mango leaf spot pathogen Alternaria alternata. Salinity tolerance in Cucumis sativus seedlings: the role of pistachio wood vinegar on the improvement of biochemical parameters and seedlings vigor. Transgressive expression and dosage effect of A09 chromosome genes and their homoeologous genes influence the flowering time of resynthesized allopolyploid Brassica napus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1