Background: The genomes within organelles are crucial for physiological functions such as respiration and photosynthesis and may also contribute to environmental adaptation. However, the limited availability of genetic resources, particularly mitochondrial genomes, poses significant challenges for in-depth investigations.
Results: Here, we explored various assembly methodologies and successfully reconstructed the complex organelle genomes of two Rhododendron species: Rhododendron nivale subsp. boreale and Rhododendron vialii. The mitogenomes of these species exhibit various conformations, as evidenced by long-reads mapping. Notably, only the mitogenome of R. vialii can be depicted as a singular circular molecule. The plastomes of both species conform to the typical quadripartite structure but exhibit elongated inverted repeat (IR) regions. Compared to the high similarity between plastomes, the mitogenomes display more obvious differences in structure, repeat sequences, and codon usage. Based on the analysis of 58 organelle genomes from angiosperms inhabiting various altitudes, we inferred the genetic adaptations associated with high-altitude environments. Phylogenetic analysis revealed partial inconsistencies between plastome- and mitogenome-derived phylogenies. Additionally, evolutionary lineage was determined to exert a greater influence on codon usage than altitude. Importantly, genes such as atp4, atp9, mttB, and clpP exhibited signs of positive selection in several high-altitude species, suggesting a potential link to alpine adaptation.
Conclusions: We tested the effectiveness of different organelle assembly methods for dealing with complex genomes, while also providing and validating high-quality organelle genomes of two Rhododendron species. Additionally, we hypothesized potential strategies for high-altitude adaptation of organelles. These findings offer a reference for the assembly of complex organelle genomes, while also providing new insights and valuable resources for understanding their adaptive evolution patterns.
The resilience of tomato plants under different cultivation environments, particularly saline and non-saline conditions, was investigated by applying various treatments, including 0.5% Ascorbic Acid (AsA) and 1% Sulphur-treated Biochar (BS). The study evaluated parameters such as fruit length, diameter, yield per plant and pot, Total Soluble Solids (TSS) content, chlorophyll content, electrolyte leakage, enzyme activities (Superoxide Dismutase - SOD, Peroxidase - POD, Catalase - CAT), and nutrient content (Nitrogen - N%, Phosphorus - P%, Potassium - K%). Under saline conditions, significant enhancements were observed in fruit characteristics and yield metrics with the application of AsA and BS individually, with the combined treatment yielding the most substantial improvements. Notably, AsA and BS treatments exhibited varying effects on TSS levels, chlorophyll content, electrolyte leakage, and enzyme activities, with the combination treatment consistently demonstrating superior outcomes. Additionally, nutrient content analysis revealed notable increases, particularly under non-saline conditions, with the combined treatment showcasing the most significant enhancements. Overall, the study underscores the potential of AsA and BS treatments in promoting tomato resilience, offering insights into their synergistic effects on multiple physiological and biochemical parameters crucial for plant growth and productivity.
Background: Soil salinity is an important environmental component affecting plant growth and yield, but high-salinity soils are a major constraint to the development of the grape industry. Previous studies have provided lines of evidence that gibberellins (GAs) play a significant regulatory role in plant responses to salt stress. However, it remains unclear whether GA2ox, a key enzyme that maintains the balance of bioactive gibberellins and intermediates in plants, is involved in the mechanism of salt stress tolerance in grapes.
Results: In this study, we found that GA2ox7 positively modulates salt stress via its ectopic expression in Arabidopsis thaliana. The GA2ox7 gene cloned from grape was a hydrophilic protein, its CDS length was 1002 bp. Besides, VvGA2ox7 protein contained DIOX_N and 2OG-FeII_Oxy domains and was localized at the nucleus and cytoplasm. Yeast two-hybrid (Y2H) showed VvARCN1, VvB5R, VvRUB2, and VvCAR11 might be potential interaction proteins of VvGA2ox7. Compared with the wild type, overexpression of VvGA2ox7 in Arabidopsis thaliana enhanced antioxidant enzymatic activities and proline, chlorophyll, and ABA contents, and decreased relative electrical conductivity, malondialdehyde, and GA3 contents. Moreover, overexpression of VvGA2ox7 positively regulated the expression of salt stress response genes (KAT1, APX1, LEA, P5CS1, AVP1, CBF1), indicating that the VvGA2ox7 overexpression improved the salt stress tolerance of plants.
Conclusions: Taken together, this investigation indicates that VvGA2ox7 may act as a positive regulator in response to salt stress and provide novel insights for a deeper understanding of the role of VvGA2ox7 in grapes.
Background: Hemsleya Chinensis is a perennial plant in the Cucurbitaceae family containing antibacterial and anti-inflammatory compounds. The lack of genetic transformation systems makes it difficult to verify the functions of genes controlling important traits and conduct molecular breeding in H. chinensis.
Results: Highly efficient calli were induced on MS medium added 1.5 mg·L- 1 6-benzylaminopurine (6-BA) and 0.02 mg·L- 1 1-naphthylacetic acid (NAA) with high efficiency (> 95%). The frequency of shoot induction was increased to 90% with a plant growth regulator combination of 1.5 mg·L- 1 6-BA and 0.1 mg·L- 1 NAA. Our results also showed that 100% of shoot regeneration was achieved in a shoot regeneration medium. Additionally, more than 92% of kanamycin-resistant plants were confirmed. Furthermore, we achieved 42% genome editing efficiency by applying this transformation method to HcOSC6, a gene that catalyzes the formation of cucurbitadienol. HPLC analysis showed OE-HcOSC6 lines exhibited significantly higher cucurbitadienol levels than the genome-edited lines. Transcriptomic analysis revealed that some downstream genes related to cucurbitadienol biosynthesis, such as HcCYP87D20, HcCYP81Q58, and HcSDR34, were up-regulated in OE lines and down-regulated in mutants.
Conclusions: Here, we established a process for regeneration, transformation, and genome editing of H. chinensis using stem segments. This provides valuable insight into the underlying molecular mechanisms of medicinal compound production. By combining high-efficiency tissue culture, transformation, and genome editing systems, we provide a powerful platform that supports functional research on molecular mechanisms of secondary metabolism.
Background: Yellow lupine (Lupinus luteus L.) is a high-protein crop of considerable economic and ecological significance. It has the ability to fix atmospheric nitrogen in symbiosis with Rhizobium, enriching marginal soils with this essential nutrient and reducing the need for artificial fertilizers. Additionally, lupine produces seeds with a high protein content, making it valuable for animal feed production. However, drought negatively affects lupine development, its mutualistic relationship with bacteria, and overall yield. To understand how lupine responds to this stress, global transcriptome sequencing was conducted, along with in-depth biochemical, chromatography, and microscopy analyses of roots subjected to drought. The results presented here contribute to strategies aimed at mitigating the effects of water deficit on lupine growth and development.
Results: Based on RNA-seq, drought-specific genes were identified and annotated to biological pathways involved in phytohormone biosynthesis/signaling, lipid metabolism, and redox homeostasis. Our findings indicate that drought-induced disruption of redox balance characterized by the upregulation of reactive oxygen species (ROS) scavenging enzymes, coincided with the accumulation of lipid-metabolizing enzymes, such as phospholipase D (PLD) and lipoxygenase (LOX). This disruption also led to modifications in lipid homeostasis, including increased levels of triacylglycerols (TAG) and free fatty acids (FFA), along with a decrease in polar lipid content. Additionally, the stress response involved alterations in the transcriptional regulation of the linolenic acid metabolism network, resulting in changes in the composition of fatty acids containing 18 carbons.
Conclusion: The first comprehensive global transcriptomic profiles of lupine roots, combined with the identification of key stress-responsive molecules, represent a significant advancement in understanding lupine's responses to abiotic stress. The increased expression of the Δ12DESATURASE gene and enhanced PLD activity lead to higher level of linoleic acid (18:2), which is subsequently oxidized by LOX, resulting in membrane damage and malondialdehyde (MDA) accumulation. Oxidative stress elevates the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT), while the conversion of FFAs into TAGs provides protection against ROS. This research offers valuable molecular and biochemical candidates with significant potential to enhance drought tolerance . It enables innovative strategies in lupine breeding and crop improvement to address critical agricultural challenges.
Heat stress has become one of the abiotic stresses that pose an increasing threat to maize production due to global warming. The Hsp20 gene family confers tolerance to various abiotic stresses in plants. However, very few Hsp20s have been identified in relation to maize thermotolerance. In this study, we conducted a comprehensive study of Hsp20s involved in thermotolerance in maize. A total of 33 maize Hsp20 genes (ZmHsp20s) were identified through scanning for a conserved α-crystalline domain (ACD), and they were categorized into 14 subfamilies based on phylogenetic analysis. These genes are distributed across all maize chromosomes and nine of them are in regions previously identified as heat-tolerance quantitative trait loci (hrQTL). These hrQTL-associated ZmHsp20s show variation in tissue-specific expression profiles under normal conditions, and seven of them possess 1-5 heat stress elements in their promoters. The integration of RNA-seq data with real-time RT-PCR analysis indicated that ZmHsp23.4, ZmHsp22.8B and ZmHsp18 were dramatically induced under heat stress. Additionally, these genes exhibited co-expression patterns with key ZmHsfs, which are crucial in the heat tolerance pathway. When a null mutant carrying a frame-shifted ZmHsp18 gene was subjected to heat stress, its survival rate decreased significantly, indicating a critical role of ZmHsp18 in maize thermotolerance. Our study lays the groundwork for further research into the roles of ZmHsp20s in enhancing maize's thermotolerance.
The physical appearance of date palm (Phoenix dactylifera) fruit (dates) is important for its market value. Many date-producing countries experience significant financial losses due to the poor appearance of the fruit, skin separation or puffiness being a major reason. Previous research showed evidence linking the skin separation phenotype to environmental conditions. To investigate this further, a genome-wide association study was conducted using genome data from 199 samples collected from 14 countries. Here, we identified nine genetic loci associated with this phenotype and investigated genes in these regions that may contribute to the phenotype overall. Multiple genes in the associated regions have functional responses to growth regulators and are involved in cell wall development and modification. Analysis of gene expression data shows many are expressed during fruit development. We show that there are both environmental and genetic contributions to the fruit skin separation phenotype. Our results indicate that different date cultivars exhibit varying degrees of skin separation despite genetic similarities or differences. However, genetically different cultivars show extreme differences compared to the phenotype variation between genetically similar cultivars. We demonstrate that beyond environmental factors, genetics is a strong contributor to the most extreme skin separation in some cultivars. Identifying the genetic factors may help better understand the biology and pathways that lead to the environmental effects on skin separation and improve commercial date production. In conclusion, our key finding is that both environmental and genetic factors contribute to skin separation variation, and improvements in environmental factors alone cannot overcome the extreme level of variation observed in some cultivars.
Background: Forage sorghum is a highly valued crop in livestock feed production due to its versatility, adaptability, high productivity, and resilience under adverse environmental conditions, making it a crucial option for sustainable forage production. This study aimed to investigate ninety-five forage sorghum genotypes and identify the marker - trait associations (MTAs) in adaptive traits, including yield and flowering through genome-wide association studies (GWAS).
Results: Using 41,854 polymorphic SNPs, a GWAS involving the GLM, MLM, and FarmCPU models was performed to analyse fourteen adaptive traits. The population structure revealed the presence of two subpopulation groups. Linkage disequilibrium (LD) plots showed varying degrees of LD decay across the chromosomes, with an average LD decay of 19.49 kbp. Twelve common significant QTNs, encoding 17 putative candidate genes, were simultaneously co-detected and studied by at least two or more GWAS methods. Three QTNs were associated to days to 50% flowering; two each to leaf-to-stem ratio and number of nodes per plant; and one each to plant height, leaf width, number of leaves per plant, stem girth, and internodal length. Six candidate genes were associated with days to 50% flowering, two each with leaf width, stem girth, leaf-to-stem ratio, and number of nodes per plant, and one each with plant height, number of leaves per plant, and internodal length.
Conclusion: FarmCPU was identified as the most suitable and effective among all the models for controlling both false positives and false negatives. Further in-depth analysis of the newly discovered QTNs may lead to the identification of new candidate genes for the trait of interest. These studies elucidate gene functions and could transform forage sorghum breeding through marker-assisted selection and transgenic approaches, accelerating the development of superior forage sorghum varieties and enhancing global food security.