Patrycja Kwiecinska, Michal Santocki, Joanna Skrzeczynska-Moncznik, Ivan Sinkevich, Katarzyna Piwowarczyk, Pawel Majewski, Beata Grygier, Monika Majchrzak-Gorecka, Jaroslaw Czyz, Elzbieta Kolaczkowska, Joanna Cichy
{"title":"SLPI controls neutrophil migration abilities and impacts neutrophil skin infiltration in experimental psoriasis.","authors":"Patrycja Kwiecinska, Michal Santocki, Joanna Skrzeczynska-Moncznik, Ivan Sinkevich, Katarzyna Piwowarczyk, Pawel Majewski, Beata Grygier, Monika Majchrzak-Gorecka, Jaroslaw Czyz, Elzbieta Kolaczkowska, Joanna Cichy","doi":"10.1007/s00018-025-05606-y","DOIUrl":null,"url":null,"abstract":"<p><p>Skin infiltration by neutrophils is a hallmark of the chronic inflammatory skin disease psoriasis, yet the mechanisms underlying neutrophil recruitment and positioning in chronically inflamed skin remain poorly understood. In this study, we demonstrate the significant impact of a total genetic deficiency of secretory leukocyte protease inhibitor (SLPI) on neutrophil migration in mouse skin. Without SLPI, neutrophils displayed an unconventional migratory pattern, characterized by altered interactions with vessel walls and reduced efficiency in extravasating from blood vessels into skin tissue during the early stages of experimental psoriasis. This was associated with changes in tissue motility, positioning neutrophils farther from the skin entry vessels and closer to the skin surface. Neutrophil diapedesis was partially dependent on SLPI within the neutrophils themselves. The impact of SLPI on neutrophil movement was further supported by the increased migration of human neutrophils in the presence of neutrophil-penetrant recombinant SLPI. Additionally, our data suggest that neutrophils with varying capacities for vessel wall interaction are released from the bone marrow into circulation in an SLPI-dependent manner. These findings establish a role for SLPI in regulating the spatiotemporal infiltration of neutrophils into the skin in psoriasis, highlighting its relevance to psoriasis pathophysiology.</p>","PeriodicalId":10007,"journal":{"name":"Cellular and Molecular Life Sciences","volume":"82 1","pages":"74"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11810868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00018-025-05606-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Skin infiltration by neutrophils is a hallmark of the chronic inflammatory skin disease psoriasis, yet the mechanisms underlying neutrophil recruitment and positioning in chronically inflamed skin remain poorly understood. In this study, we demonstrate the significant impact of a total genetic deficiency of secretory leukocyte protease inhibitor (SLPI) on neutrophil migration in mouse skin. Without SLPI, neutrophils displayed an unconventional migratory pattern, characterized by altered interactions with vessel walls and reduced efficiency in extravasating from blood vessels into skin tissue during the early stages of experimental psoriasis. This was associated with changes in tissue motility, positioning neutrophils farther from the skin entry vessels and closer to the skin surface. Neutrophil diapedesis was partially dependent on SLPI within the neutrophils themselves. The impact of SLPI on neutrophil movement was further supported by the increased migration of human neutrophils in the presence of neutrophil-penetrant recombinant SLPI. Additionally, our data suggest that neutrophils with varying capacities for vessel wall interaction are released from the bone marrow into circulation in an SLPI-dependent manner. These findings establish a role for SLPI in regulating the spatiotemporal infiltration of neutrophils into the skin in psoriasis, highlighting its relevance to psoriasis pathophysiology.
期刊介绍:
Journal Name: Cellular and Molecular Life Sciences (CMLS)
Location: Basel, Switzerland
Focus:
Multidisciplinary journal
Publishes research articles, reviews, multi-author reviews, and visions & reflections articles
Coverage:
Latest aspects of biological and biomedical research
Areas include:
Biochemistry and molecular biology
Cell biology
Molecular and cellular aspects of biomedicine
Neuroscience
Pharmacology
Immunology
Additional Features:
Welcomes comments on any article published in CMLS
Accepts suggestions for topics to be covered