Evelyn P Sievert, Marissa C Franke, Kayla B Thomas, Yoseop Yoon, Yongsheng Shi, Roger Sciammas
{"title":"Distinct plasmablast developmental intermediates produce graded expression of IgM secretory transcripts.","authors":"Evelyn P Sievert, Marissa C Franke, Kayla B Thomas, Yoseop Yoon, Yongsheng Shi, Roger Sciammas","doi":"10.1016/j.celrep.2025.115283","DOIUrl":null,"url":null,"abstract":"<p><p>Differentiation into plasma cells (PCs) enables secretion of ∼10,000 immunoglobulin molecules per second. This extraordinary capacity requires the upregulation of PC transcriptional determinants that specify PC fate, increase immunoglobulin mRNA synthesis, coordinate alternative 3' end processing of the heavy chain transcript from the distal to proximal polyadenylation site (PAS), and remodel the secretory pathway. We developed a dual-fluorescent protein reporter mouse to prospectively study the post-transcriptional-level transition from membrane anchored to secretory immunoglobulin M; μM-PAS and μS-PAS, respectively. We observed (1) graded μS-PAS usage during PC differentiation, (2) IRF4 and Blimp-1 functioned hierarchically to increase μ abundance as well as μS-PAS usage, and (3) graded μS populations did or did not express Blimp-1. Interestingly, the low and high μS and Blimp-1-expressing populations arose from distinct developmental intermediates that exhibited dissimilar endoplasmic reticulum features. The distinct cell and μS-PAS fate trajectories may have implications for derivatization of the secretory pathway.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115283"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115283","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Differentiation into plasma cells (PCs) enables secretion of ∼10,000 immunoglobulin molecules per second. This extraordinary capacity requires the upregulation of PC transcriptional determinants that specify PC fate, increase immunoglobulin mRNA synthesis, coordinate alternative 3' end processing of the heavy chain transcript from the distal to proximal polyadenylation site (PAS), and remodel the secretory pathway. We developed a dual-fluorescent protein reporter mouse to prospectively study the post-transcriptional-level transition from membrane anchored to secretory immunoglobulin M; μM-PAS and μS-PAS, respectively. We observed (1) graded μS-PAS usage during PC differentiation, (2) IRF4 and Blimp-1 functioned hierarchically to increase μ abundance as well as μS-PAS usage, and (3) graded μS populations did or did not express Blimp-1. Interestingly, the low and high μS and Blimp-1-expressing populations arose from distinct developmental intermediates that exhibited dissimilar endoplasmic reticulum features. The distinct cell and μS-PAS fate trajectories may have implications for derivatization of the secretory pathway.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.