{"title":"A posterior insula to lateral amygdala pathway transmits US-offset information with a limited role in fear learning.","authors":"Shriya Palchaudhuri, Bei-Xuan Lin, Denys Osypenko, Jinyun Wu, Olexiy Kochubey, Ralf Schneggenburger","doi":"10.1016/j.celrep.2025.115320","DOIUrl":null,"url":null,"abstract":"<p><p>During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca<sup>2+</sup> imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115320"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115320","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca2+ imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.