Xiang Yu, Daoyan Hu, Qiong Yao, Yu Fu, Yan Zhong, Jing Wang, Mei Tian, Hong Zhang
{"title":"Diffused Multi-scale Generative Adversarial Network for low-dose PET images reconstruction.","authors":"Xiang Yu, Daoyan Hu, Qiong Yao, Yu Fu, Yan Zhong, Jing Wang, Mei Tian, Hong Zhang","doi":"10.1186/s12938-025-01348-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study is to convert low-dose PET (L-PET) images to full-dose PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network (DMGAN) to offer a potential balance between reducing radiation exposure and maintaining diagnostic performance.</p><p><strong>Methods: </strong>The proposed method includes two modules: the diffusion generator and the u-net discriminator. The goal of the first module is to get different information from different levels, enhancing the generalization ability of the generator to the image and improving the stability of the training. Generated images are inputted into the u-net discriminator, extracting details from both overall and specific perspectives to enhance the quality of the generated F-PET images. We conducted evaluations encompassing both qualitative assessments and quantitative measures. In terms of quantitative comparisons, we employed two metrics, structure similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) to evaluate the performance of diverse methods.</p><p><strong>Results: </strong>Our proposed method achieved the highest PSNR and SSIM scores among the compared methods, which improved PSNR by at least 6.2% compared to the other methods. Compared to other methods, the synthesized full-dose PET image generated by our method exhibits a more accurate voxel-wise metabolic intensity distribution, resulting in a clearer depiction of the epilepsy focus.</p><p><strong>Conclusions: </strong>The proposed method demonstrates improved restoration of original details from low-dose PET images compared to other models trained on the same datasets. This method offers a potential balance between minimizing radiation exposure and preserving diagnostic performance.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"16"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01348-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study is to convert low-dose PET (L-PET) images to full-dose PET (F-PET) images based on our Diffused Multi-scale Generative Adversarial Network (DMGAN) to offer a potential balance between reducing radiation exposure and maintaining diagnostic performance.
Methods: The proposed method includes two modules: the diffusion generator and the u-net discriminator. The goal of the first module is to get different information from different levels, enhancing the generalization ability of the generator to the image and improving the stability of the training. Generated images are inputted into the u-net discriminator, extracting details from both overall and specific perspectives to enhance the quality of the generated F-PET images. We conducted evaluations encompassing both qualitative assessments and quantitative measures. In terms of quantitative comparisons, we employed two metrics, structure similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) to evaluate the performance of diverse methods.
Results: Our proposed method achieved the highest PSNR and SSIM scores among the compared methods, which improved PSNR by at least 6.2% compared to the other methods. Compared to other methods, the synthesized full-dose PET image generated by our method exhibits a more accurate voxel-wise metabolic intensity distribution, resulting in a clearer depiction of the epilepsy focus.
Conclusions: The proposed method demonstrates improved restoration of original details from low-dose PET images compared to other models trained on the same datasets. This method offers a potential balance between minimizing radiation exposure and preserving diagnostic performance.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering