Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Diabetic Medicine Pub Date : 2025-02-09 DOI:10.1111/dme.15507
Xi Lin, Qi Lin
{"title":"Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model.","authors":"Xi Lin, Qi Lin","doi":"10.1111/dme.15507","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic foot ulcers (DFUs) are the severe chronic complications of diabetes, amputation is required when ulcers cause severe loss of tissue or evoke a life-threatening infection. Mesenchymal stem cells (MSCs) have shown a good effect in helping DFU healing, though the efficiency needs to be improved. This study aimed to investigate the effects of heat shock pretreatment on the improvement of the therapeutic effects of MSCs.</p><p><strong>Methods: </strong>Primary rat bone marrow MSCs (BMSCs) were isolated and stimulated with heat shock pretreatment and then tested on a DFU rat model. Alkaline phosphatase, Alizarin Red S, and Oil Red O were stained to check the osteogenic differentiation ability of heat shock-pretreated BMSCs. The effect of heat shock pretreatment on the inflammatory response of macrophages was studied with the lipopolysaccharides stimulation model on a mouse macrophage cell line RAW264.7. The impact of heat shock-pretreated BMSCs on dermal fibroblasts was also checked. Last, heat shock-pretreated BMSCs were tested on a DFU rat model.</p><p><strong>Results: </strong>Heat shock-pretreated BMSCs were characterized by the expression of CD105 and CD44. Heat shock pre-stimulation did not affect cell viability when cultured up to 96 h. Heat shock pre-stimulated BMSCs inhibited the inflammatory response by reducing the pro-inflammatory cytokine production (IL-1β, IL-6, and TNF-α) and enhancing the anti-inflammatory cytokine production (IL-10) (at least all p < 0.01), as well as increasing the ratio of M2 polarization macrophages to M1 polarization in vitro (p < 0.001). Heat shock pre-stimulated BMSCs enhanced the growth and migration of dermal fibroblasts in vitro (p < 0.001). Heat shock-BMSCs promoted the M2 polarization level of macrophages in wound tissues in a DFU rat model.</p><p><strong>Conclusion: </strong>Heat shock pretreatment could enhance the therapeutic effect of BMSCs on wound healing in a DFU rat model.</p>","PeriodicalId":11251,"journal":{"name":"Diabetic Medicine","volume":" ","pages":"e15507"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/dme.15507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Diabetic foot ulcers (DFUs) are the severe chronic complications of diabetes, amputation is required when ulcers cause severe loss of tissue or evoke a life-threatening infection. Mesenchymal stem cells (MSCs) have shown a good effect in helping DFU healing, though the efficiency needs to be improved. This study aimed to investigate the effects of heat shock pretreatment on the improvement of the therapeutic effects of MSCs.

Methods: Primary rat bone marrow MSCs (BMSCs) were isolated and stimulated with heat shock pretreatment and then tested on a DFU rat model. Alkaline phosphatase, Alizarin Red S, and Oil Red O were stained to check the osteogenic differentiation ability of heat shock-pretreated BMSCs. The effect of heat shock pretreatment on the inflammatory response of macrophages was studied with the lipopolysaccharides stimulation model on a mouse macrophage cell line RAW264.7. The impact of heat shock-pretreated BMSCs on dermal fibroblasts was also checked. Last, heat shock-pretreated BMSCs were tested on a DFU rat model.

Results: Heat shock-pretreated BMSCs were characterized by the expression of CD105 and CD44. Heat shock pre-stimulation did not affect cell viability when cultured up to 96 h. Heat shock pre-stimulated BMSCs inhibited the inflammatory response by reducing the pro-inflammatory cytokine production (IL-1β, IL-6, and TNF-α) and enhancing the anti-inflammatory cytokine production (IL-10) (at least all p < 0.01), as well as increasing the ratio of M2 polarization macrophages to M1 polarization in vitro (p < 0.001). Heat shock pre-stimulated BMSCs enhanced the growth and migration of dermal fibroblasts in vitro (p < 0.001). Heat shock-BMSCs promoted the M2 polarization level of macrophages in wound tissues in a DFU rat model.

Conclusion: Heat shock pretreatment could enhance the therapeutic effect of BMSCs on wound healing in a DFU rat model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Diabetic Medicine
Diabetic Medicine 医学-内分泌学与代谢
CiteScore
7.20
自引率
5.70%
发文量
229
审稿时长
3-6 weeks
期刊介绍: Diabetic Medicine, the official journal of Diabetes UK, is published monthly simultaneously, in print and online editions. The journal publishes a range of key information on all clinical aspects of diabetes mellitus, ranging from human genetic studies through clinical physiology and trials to diabetes epidemiology. We do not publish original animal or cell culture studies unless they are part of a study of clinical diabetes involving humans. Categories of publication include research articles, reviews, editorials, commentaries, and correspondence. All material is peer-reviewed. We aim to disseminate knowledge about diabetes research with the goal of improving the management of people with diabetes. The journal therefore seeks to provide a forum for the exchange of ideas between clinicians and researchers worldwide. Topics covered are of importance to all healthcare professionals working with people with diabetes, whether in primary care or specialist services. Surplus generated from the sale of Diabetic Medicine is used by Diabetes UK to know diabetes better and fight diabetes more effectively on behalf of all people affected by and at risk of diabetes as well as their families and carers.”
期刊最新文献
Issue Information Guidelines for the management of diabetes-related ketoacidosis (DKA) have been poorly adopted and implemented, resulting in a lack of improvement in outcomes. Dietary interventions for the management of type 2 diabetes mellitus in childhood and adolescence: A systematic review. Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model. Screening for disordered eating in adolescents with Type 1 diabetes: A comparison of Diabetes Eating Problem Survey Revised (DEPS-R) and Youth Eating Disorder Examination Questionnaire (YEDE-Q) with item-level analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1