Abhik Ghosh Moulick, Rutika Patel, Augustine Onyema, Sharon M Loverde
{"title":"Unveiling nucleosome dynamics: A comparative study using all-atom and coarse-grained simulations enhanced by principal component analysis.","authors":"Abhik Ghosh Moulick, Rutika Patel, Augustine Onyema, Sharon M Loverde","doi":"10.1063/5.0246977","DOIUrl":null,"url":null,"abstract":"<p><p>The conformational dynamics of the DNA in the nucleosome may play a role in governing gene regulation and accessibility and impact higher-order chromatin structure. This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences-alpha satellite palindromic and Widom-601-over 6 μs at physiological salt concentrations. A comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, although CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends. Principal component analysis is applied to DNA structural parameters, revealing multiple free energy minima, especially in CG simulations. These findings highlight the potential of the SIRAH CG force field for studying large-scale nucleosome dynamics, offering insights into DNA repositioning and sequence-dependent behavior.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":"162 6","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0246977","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The conformational dynamics of the DNA in the nucleosome may play a role in governing gene regulation and accessibility and impact higher-order chromatin structure. This study investigates nucleosome dynamics using both all-atom and coarse-grained (CG) molecular dynamics simulations, focusing on the SIRAH force field. Simulations are performed for two nucleosomal DNA sequences-alpha satellite palindromic and Widom-601-over 6 μs at physiological salt concentrations. A comparative analysis of structural parameters, such as groove widths and base pair geometries, reveals good agreement between atomistic and CG models, although CG simulations exhibit broader conformational sampling and greater breathing motion of DNA ends. Principal component analysis is applied to DNA structural parameters, revealing multiple free energy minima, especially in CG simulations. These findings highlight the potential of the SIRAH CG force field for studying large-scale nucleosome dynamics, offering insights into DNA repositioning and sequence-dependent behavior.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.