Preparation of p-type Fe2O3 nanoarray and its performance as photocathode for photoelectrochemical water splitting.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Frontiers in Chemistry Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.3389/fchem.2025.1526745
Xiaoli Fan, Fei Zhu, Zeyi Wang, Xi Wang, Yi Zou, Bin Gao, Li Song, Jianping He, Tao Wang
{"title":"Preparation of p-type Fe<sub>2</sub>O<sub>3</sub> nanoarray and its performance as photocathode for photoelectrochemical water splitting.","authors":"Xiaoli Fan, Fei Zhu, Zeyi Wang, Xi Wang, Yi Zou, Bin Gao, Li Song, Jianping He, Tao Wang","doi":"10.3389/fchem.2025.1526745","DOIUrl":null,"url":null,"abstract":"<p><p>Photoelectrochemical (PEC) water splitting has the potential to convert solar energy into chemical energy, emerging as a promising alternative to fossil fuel combustion. In PEC systems, p-type semiconductors are particularly noteworthy for their ability to directly produce hydrogen. In this work, Fe<sub>2</sub>O<sub>3</sub> with p-type semiconductor properties grown directly on the conductive glass substrate were successfully synthesized through a simple one-step hydrothermal method. The analysis results indicate that the Fe<sub>2</sub>O<sub>3</sub> exhibits a spindle shaped nanoarray structure and possesses a small band gap, thereby demonstrating excellent photoelectrochemical performance as a photocathode with photocurrent density of -23 μA cm<sup>-2</sup> at 0.4 V vs. RHE. Further band structure tests reveal that its conduction band position is more negative compared to the hydrogen evolution potential, highlighting its significant potential as a photocathode material.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"13 ","pages":"1526745"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802549/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2025.1526745","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoelectrochemical (PEC) water splitting has the potential to convert solar energy into chemical energy, emerging as a promising alternative to fossil fuel combustion. In PEC systems, p-type semiconductors are particularly noteworthy for their ability to directly produce hydrogen. In this work, Fe2O3 with p-type semiconductor properties grown directly on the conductive glass substrate were successfully synthesized through a simple one-step hydrothermal method. The analysis results indicate that the Fe2O3 exhibits a spindle shaped nanoarray structure and possesses a small band gap, thereby demonstrating excellent photoelectrochemical performance as a photocathode with photocurrent density of -23 μA cm-2 at 0.4 V vs. RHE. Further band structure tests reveal that its conduction band position is more negative compared to the hydrogen evolution potential, highlighting its significant potential as a photocathode material.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
期刊最新文献
Discriminating the adulteration of varieties and misrepresentation of vintages of Pu'er tea based on Fourier transform near infrared diffuse reflectance spectroscopy. Exploring precision therapeutics: computational design of antisense oligonucleotides targeting AXL gene transcripts in multiple sclerosis treatment management. Molecular characterization, chemical profile and biological properties of essential oils from Chamaemelum nobile (L.) flowers of Morocco: in vitro and in silico studies. Editorial: Exploring novel approaches to small molecule kinase inhibitors in cancer treatment. Investigation of photophysical properties and potential biological applications of substituted tris(polypyridyl)ruthenium(II) complexes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1