Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.

IF 2.4 3区 医学 Q3 NEUROSCIENCES Frontiers in Human Neuroscience Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1484470
Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim
{"title":"Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.","authors":"Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim","doi":"10.3389/fnhum.2025.1484470","DOIUrl":null,"url":null,"abstract":"<p><p>The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using \"BruteExtraTree\": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1484470"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1484470","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using "BruteExtraTree": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
期刊最新文献
Effects of open-skill exercise on executive functions in children and adolescents: a systematic review and meta-analysis. Neurodiversity: post-cognitivist foundations of the 3E approach for educational inclusion of autistic students with technology. Functional connectivity in burnout syndrome: a resting-state EEG study. Potential common targets of music therapy intervention in neuropsychiatric disorders: the prefrontal cortex-hippocampus -amygdala circuit (a review). Neuroplasticity and functional reorganization of language in patients with arteriovenous malformations: insights from neuroimaging and clinical interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1