Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim
{"title":"Stochasticity as a solution for overfitting-A new model and comparative study on non-invasive EEG prospects.","authors":"Yousef A Radwan, Eslam Ahmed Mohamed, Donia Metwalli, Mariam Barakat, Anas Ahmed, Antony E Kiroles, Sahar Selim","doi":"10.3389/fnhum.2025.1484470","DOIUrl":null,"url":null,"abstract":"<p><p>The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using \"BruteExtraTree\": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1484470"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802819/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1484470","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The potential and utility of inner speech is pivotal for developing practical, everyday Brain-Computer Interface (BCI) applications, as it represents a type of brain signal that operates independently of external stimuli however it is largely underdeveloped due to the challenges faced in deciphering its signals. In this study, we evaluated the behaviors of various Machine Learning (ML) and Deep Learning (DL) models on a publicly available dataset, employing popular preprocessing methods as feature extractors to enhance model training. We face significant challenges like subject-dependent variability, high noise levels, and overfitting. To address overfitting in particular, we propose using "BruteExtraTree": a new classifier which relies on moderate stochasticity inherited from its base model, the ExtraTreeClassifier. This model not only matches the best DL model, ShallowFBCSPNet, in the subject-independent scenario in our experiments scoring 32% accuracy, but also surpasses the state-of-the-art by achieving 46.6% average per-subject accuracy in the subject-dependent case. Our results on the subject-dependent case show promise on the possibility of a new paradigm for using inner speech data inspired from LLM pretraining but we also highlight the crucial need for a drastic change in data recording or noise removal methods to open the way for more practical accuracies in the subject-independent case.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.