Translingual neural stimulation induced changes in intra- and inter-network functional connectivity in mild-moderate traumatic brain injury patients.

IF 2.4 3区 医学 Q3 NEUROSCIENCES Frontiers in Human Neuroscience Pub Date : 2025-01-24 eCollection Date: 2025-01-01 DOI:10.3389/fnhum.2025.1481474
Daniel Y Chu, Jiancheng Hou, Thomas Hosseini, Veena A Nair, Nagesh Adluru, Yuri Danilov, Kurt A Kaczmarek, Mary E Meyerand, Mitchell Tyler, Vivek Prabhakaran
{"title":"Translingual neural stimulation induced changes in intra- and inter-network functional connectivity in mild-moderate traumatic brain injury patients.","authors":"Daniel Y Chu, Jiancheng Hou, Thomas Hosseini, Veena A Nair, Nagesh Adluru, Yuri Danilov, Kurt A Kaczmarek, Mary E Meyerand, Mitchell Tyler, Vivek Prabhakaran","doi":"10.3389/fnhum.2025.1481474","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mild-to-moderate traumatic brain injury (mmTBI) that lead to deficits in balance and gait are difficult to resolve through standard therapy protocols, and these deficits can severely impact a patient's quality of life. Recently, translingual neural stimulation (TLNS) has emerged as a potential therapy for mmTBI-related balance and gait deficits by inducing neuroplastic changes in the brain gray matter structure. However, it is still unclear how interactions within and between functional networks in brain are affected by TLNS. The current study aimed to extend our previous resting-state functional connectivity (RSFC) study investigating the effects of TLNS intervention on outcome measures related to gait and balance.</p><p><strong>Methods: </strong>An experimental PoNS device was utilized to deliver the TLNS. The 2-week TLNS intervention program, specifically stimulation during focused physical therapy focused on recovery of gait and balance, included twice-daily treatment in the laboratory and the same program at home during the intervening weekend. The resting-state fMRI datasets at pre- and post-interventions were collected by 3T MRI scanner with nine mmTBI patients. All participants also received both Sensory Organization Test (SOT) and Dynamic Gait Index (DGI) testing pre- and post-intervention as part of the behavioral assessment.</p><p><strong>Results: </strong>Compared to baseline, TLNS intervention led to statistically significant improvements in both the SOT [<i>t</i> <sub>(8)</sub> = 2.742, <i>p</i> = 0.028] and the DGI [<i>t</i> <sub>(8)</sub> = 2.855, <i>p</i> = 0.024] scores. Moreover, significant increases in intra- and inter-network RSFC were observed, particularly within the visual, default mode, dorsal attention, frontoparietal (FPN), and somatosensory (SMN) networks. Additionally, there were significant correlations between the SOT and inter-network FC [between FPN and SMN, <i>r</i> <sub>(9)</sub> = -0.784, <i>p</i> = 0.012] and between the DGI and intra-network FC [within SMN, <i>r</i> <sub>(9)</sub> = 0.728, <i>p</i> = 0.026].</p><p><strong>Discussion: </strong>These findings suggest that TLNS intervention is an effective in increasing somatosensory processing, vestibular-visual interaction, executive control and flexible shifting, and TLNS may be an effective approach to inducing brain network plasticity and may serve as a potential therapy for mmTBI-related gait and balance deficits.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1481474"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1481474","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Mild-to-moderate traumatic brain injury (mmTBI) that lead to deficits in balance and gait are difficult to resolve through standard therapy protocols, and these deficits can severely impact a patient's quality of life. Recently, translingual neural stimulation (TLNS) has emerged as a potential therapy for mmTBI-related balance and gait deficits by inducing neuroplastic changes in the brain gray matter structure. However, it is still unclear how interactions within and between functional networks in brain are affected by TLNS. The current study aimed to extend our previous resting-state functional connectivity (RSFC) study investigating the effects of TLNS intervention on outcome measures related to gait and balance.

Methods: An experimental PoNS device was utilized to deliver the TLNS. The 2-week TLNS intervention program, specifically stimulation during focused physical therapy focused on recovery of gait and balance, included twice-daily treatment in the laboratory and the same program at home during the intervening weekend. The resting-state fMRI datasets at pre- and post-interventions were collected by 3T MRI scanner with nine mmTBI patients. All participants also received both Sensory Organization Test (SOT) and Dynamic Gait Index (DGI) testing pre- and post-intervention as part of the behavioral assessment.

Results: Compared to baseline, TLNS intervention led to statistically significant improvements in both the SOT [t (8) = 2.742, p = 0.028] and the DGI [t (8) = 2.855, p = 0.024] scores. Moreover, significant increases in intra- and inter-network RSFC were observed, particularly within the visual, default mode, dorsal attention, frontoparietal (FPN), and somatosensory (SMN) networks. Additionally, there were significant correlations between the SOT and inter-network FC [between FPN and SMN, r (9) = -0.784, p = 0.012] and between the DGI and intra-network FC [within SMN, r (9) = 0.728, p = 0.026].

Discussion: These findings suggest that TLNS intervention is an effective in increasing somatosensory processing, vestibular-visual interaction, executive control and flexible shifting, and TLNS may be an effective approach to inducing brain network plasticity and may serve as a potential therapy for mmTBI-related gait and balance deficits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Human Neuroscience
Frontiers in Human Neuroscience 医学-神经科学
CiteScore
4.70
自引率
6.90%
发文量
830
审稿时长
2-4 weeks
期刊介绍: Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.
期刊最新文献
Effects of open-skill exercise on executive functions in children and adolescents: a systematic review and meta-analysis. Neurodiversity: post-cognitivist foundations of the 3E approach for educational inclusion of autistic students with technology. Functional connectivity in burnout syndrome: a resting-state EEG study. Potential common targets of music therapy intervention in neuropsychiatric disorders: the prefrontal cortex-hippocampus -amygdala circuit (a review). Neuroplasticity and functional reorganization of language in patients with arteriovenous malformations: insights from neuroimaging and clinical interventions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1