Ruchi Jaiswal, Yimin Liu, Michael Petriello, Xiangmin Zhang, Zhengping Yi, Charlie Fehl
{"title":"A reference dataset of O-GlcNAc proteins in quadriceps skeletal muscle from mice.","authors":"Ruchi Jaiswal, Yimin Liu, Michael Petriello, Xiangmin Zhang, Zhengping Yi, Charlie Fehl","doi":"10.1093/glycob/cwaf005","DOIUrl":null,"url":null,"abstract":"<p><p>A key nutrient sensing process in all animal tissues is the dynamic attachment of O-linked N-acetylglucosamine (O-GlcNAc). Determining the targets and roles of O-GlcNAc glycoproteins has the potential to reveal insights into healthy and diseased metabolic states. In cell studies, thousands of proteins are known to be O-GlcNAcylated, but reference datasets for most tissue types in animals are lacking. Here, we apply a chemoenzymatic labeling study to compile a high coverage dataset of quadriceps skeletal muscle O-GlcNAc glycoproteins from mice. Our dataset contains over 550 proteins, and > 80% of the dataset matched known O-GlcNAc proteins. This dataset was further annotated via bioinformatics, revealing the distribution, protein interactions, and gene ontology (GO) functions of these skeletal muscle proteins. We compared these quadriceps glycoproteins with a high-coverage O-GlcNAc enrichment profile from mouse hearts and describe the key overlap and differences between these tissue types. Quadriceps muscles can be used for biopsies, so we envision this dataset to have potential biomedical relevance in detecting aberrant glycoproteins in metabolic diseases and physiological studies. This new knowledge adds to the growing collection of tissues with high-coverage O-GlcNAc profiles, which we anticipate will further the systems biology of O-GlcNAc mechanisms, functions, and roles in disease.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwaf005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A key nutrient sensing process in all animal tissues is the dynamic attachment of O-linked N-acetylglucosamine (O-GlcNAc). Determining the targets and roles of O-GlcNAc glycoproteins has the potential to reveal insights into healthy and diseased metabolic states. In cell studies, thousands of proteins are known to be O-GlcNAcylated, but reference datasets for most tissue types in animals are lacking. Here, we apply a chemoenzymatic labeling study to compile a high coverage dataset of quadriceps skeletal muscle O-GlcNAc glycoproteins from mice. Our dataset contains over 550 proteins, and > 80% of the dataset matched known O-GlcNAc proteins. This dataset was further annotated via bioinformatics, revealing the distribution, protein interactions, and gene ontology (GO) functions of these skeletal muscle proteins. We compared these quadriceps glycoproteins with a high-coverage O-GlcNAc enrichment profile from mouse hearts and describe the key overlap and differences between these tissue types. Quadriceps muscles can be used for biopsies, so we envision this dataset to have potential biomedical relevance in detecting aberrant glycoproteins in metabolic diseases and physiological studies. This new knowledge adds to the growing collection of tissues with high-coverage O-GlcNAc profiles, which we anticipate will further the systems biology of O-GlcNAc mechanisms, functions, and roles in disease.
期刊介绍:
Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases).
Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.