Optimizing a modified cetyltrimethylammonium bromide protocol for fungal DNA extraction: Insights from multilocus gene amplification.

IF 1.7 4区 生物学 Q3 BIOLOGY Open Life Sciences Pub Date : 2025-02-03 eCollection Date: 2025-01-01 DOI:10.1515/biol-2022-1006
Gulam Jeelani Dar, Ruqeya Nazir, Shakil A Wani, Saleem Farooq, Tariq Aziz, Thamer H Albekairi
{"title":"Optimizing a modified cetyltrimethylammonium bromide protocol for fungal DNA extraction: Insights from multilocus gene amplification.","authors":"Gulam Jeelani Dar, Ruqeya Nazir, Shakil A Wani, Saleem Farooq, Tariq Aziz, Thamer H Albekairi","doi":"10.1515/biol-2022-1006","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic DNA (gDNA) extraction is an important step in many molecular studies of fungal biology, and it is necessary to evaluate the efficiency, cost-effectiveness, and efficacy of different extraction methods to ensure successful amplification of the target gene and minimize deoxyribonucleic acid (DNA) degradation. The modified cetyltrimethylammonium bromide (CTAB) method was found to be effective in releasing high molecular weight gDNA with minimal protein contamination. Based on anticipated gDNA yield and quality, extraction time, cost effectiveness, successful amplification, and waste management, our findings serve as a guide for selecting techniques of gDNA extraction from fungal species. This study presents a modified CTAB method for extracting DNA from a variety of fungal species including <i>Aspergillus</i>, <i>Penicillium</i>, <i>Alternaria</i>, <i>Dothiorella,</i> and <i>Fusarium</i>. Comparison of three cell crushing methods reveals similar gDNA yields, demonstrating the method's effectiveness. Furthermore, the modified CTAB method is cost-effective and safe, eliminating the need for grinding with liquid nitrogen or bead beating. The method has a potential use for nucleic-based fungal disease diagnosis such as fish fungal diseases, plant pathogens, fruit rot associated pathogens, and human fungal diseases as we were successful in PCR amplifying several gene loci from varied fungal pathogens.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221006"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic DNA (gDNA) extraction is an important step in many molecular studies of fungal biology, and it is necessary to evaluate the efficiency, cost-effectiveness, and efficacy of different extraction methods to ensure successful amplification of the target gene and minimize deoxyribonucleic acid (DNA) degradation. The modified cetyltrimethylammonium bromide (CTAB) method was found to be effective in releasing high molecular weight gDNA with minimal protein contamination. Based on anticipated gDNA yield and quality, extraction time, cost effectiveness, successful amplification, and waste management, our findings serve as a guide for selecting techniques of gDNA extraction from fungal species. This study presents a modified CTAB method for extracting DNA from a variety of fungal species including Aspergillus, Penicillium, Alternaria, Dothiorella, and Fusarium. Comparison of three cell crushing methods reveals similar gDNA yields, demonstrating the method's effectiveness. Furthermore, the modified CTAB method is cost-effective and safe, eliminating the need for grinding with liquid nitrogen or bead beating. The method has a potential use for nucleic-based fungal disease diagnosis such as fish fungal diseases, plant pathogens, fruit rot associated pathogens, and human fungal diseases as we were successful in PCR amplifying several gene loci from varied fungal pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
4.50%
发文量
131
审稿时长
43 weeks
期刊介绍: Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.
期刊最新文献
Preliminary analysis of the role of small hepatitis B surface proteins mutations in the pathogenesis of occult hepatitis B infection via the endoplasmic reticulum stress-induced UPR-ERAD pathway. Optimizing a modified cetyltrimethylammonium bromide protocol for fungal DNA extraction: Insights from multilocus gene amplification. Proteome differences of dental stem cells between permanent and deciduous teeth by data-independent acquisition proteomics. Comparative analysis of inflammatory biomarkers for the diagnosis of neonatal sepsis: IL-6, IL-8, SAA, CRP, and PCT. Post-pandemic insights on COVID-19 and premature ovarian insufficiency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1