Gulam Jeelani Dar, Ruqeya Nazir, Shakil A Wani, Saleem Farooq, Tariq Aziz, Thamer H Albekairi
{"title":"Optimizing a modified cetyltrimethylammonium bromide protocol for fungal DNA extraction: Insights from multilocus gene amplification.","authors":"Gulam Jeelani Dar, Ruqeya Nazir, Shakil A Wani, Saleem Farooq, Tariq Aziz, Thamer H Albekairi","doi":"10.1515/biol-2022-1006","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic DNA (gDNA) extraction is an important step in many molecular studies of fungal biology, and it is necessary to evaluate the efficiency, cost-effectiveness, and efficacy of different extraction methods to ensure successful amplification of the target gene and minimize deoxyribonucleic acid (DNA) degradation. The modified cetyltrimethylammonium bromide (CTAB) method was found to be effective in releasing high molecular weight gDNA with minimal protein contamination. Based on anticipated gDNA yield and quality, extraction time, cost effectiveness, successful amplification, and waste management, our findings serve as a guide for selecting techniques of gDNA extraction from fungal species. This study presents a modified CTAB method for extracting DNA from a variety of fungal species including <i>Aspergillus</i>, <i>Penicillium</i>, <i>Alternaria</i>, <i>Dothiorella,</i> and <i>Fusarium</i>. Comparison of three cell crushing methods reveals similar gDNA yields, demonstrating the method's effectiveness. Furthermore, the modified CTAB method is cost-effective and safe, eliminating the need for grinding with liquid nitrogen or bead beating. The method has a potential use for nucleic-based fungal disease diagnosis such as fish fungal diseases, plant pathogens, fruit rot associated pathogens, and human fungal diseases as we were successful in PCR amplifying several gene loci from varied fungal pathogens.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221006"},"PeriodicalIF":1.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1006","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genomic DNA (gDNA) extraction is an important step in many molecular studies of fungal biology, and it is necessary to evaluate the efficiency, cost-effectiveness, and efficacy of different extraction methods to ensure successful amplification of the target gene and minimize deoxyribonucleic acid (DNA) degradation. The modified cetyltrimethylammonium bromide (CTAB) method was found to be effective in releasing high molecular weight gDNA with minimal protein contamination. Based on anticipated gDNA yield and quality, extraction time, cost effectiveness, successful amplification, and waste management, our findings serve as a guide for selecting techniques of gDNA extraction from fungal species. This study presents a modified CTAB method for extracting DNA from a variety of fungal species including Aspergillus, Penicillium, Alternaria, Dothiorella, and Fusarium. Comparison of three cell crushing methods reveals similar gDNA yields, demonstrating the method's effectiveness. Furthermore, the modified CTAB method is cost-effective and safe, eliminating the need for grinding with liquid nitrogen or bead beating. The method has a potential use for nucleic-based fungal disease diagnosis such as fish fungal diseases, plant pathogens, fruit rot associated pathogens, and human fungal diseases as we were successful in PCR amplifying several gene loci from varied fungal pathogens.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.