{"title":"Mitochondria-targeting siRNA screening identifies mitochondrial calcium uniporter as a factor involved in nucleoid morphology.","authors":"Hirotaka Kanon, Takaya Ishihara, Reiko Ban-Ishihara, Azusa Ota, Tatsuki Yasuda, Aoi Ichikawa, Ruo Ueyama, Taiki Baba, Kohsuke Takeda, Emi Ogasawara, Naotada Ishihara","doi":"10.1093/jb/mvaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are believed to have originated from the endosymbiosis of bacteria and they still contain their own genome, which is called mitochondrial DNA (mtDNA). Under fluorescence microscopy of cultured mammalian cells, mtDNA is observed as numerous tiny dot-like structures called mitochondrial nucleoids. In live-imaging, the morphology and distribution of nucleoids are change dynamically, but the molecular details remain poorly understood. In this study, we constructed a custom siRNA library targeting 1,164 human mitochondria-related genes, and from live-imaging-based screening of HeLa cells, we identified that mitochondria calcium uniporter (MCU), a pore-forming subunit of the mitochondrial Ca2+ channel, is involved in nucleoid morphology. We found that suppression of MCU by RNAi induced the formation of highly enlarged nucleoids as well as respiratory dysfunction and that the re-introduction of MCU or treatment with Ca2+ ionophore recovered the enlarged nucleoid morphology. These results suggest that mitochondrial Ca2+ uptake via MCU is associated with nucleoid morphology. The constructed siRNA library might be widely applied to analyze the roles of mitochondrial proteins in various cellular events, making it useful to understand the multifaceted functions of mitochondria in human cells.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf008","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are believed to have originated from the endosymbiosis of bacteria and they still contain their own genome, which is called mitochondrial DNA (mtDNA). Under fluorescence microscopy of cultured mammalian cells, mtDNA is observed as numerous tiny dot-like structures called mitochondrial nucleoids. In live-imaging, the morphology and distribution of nucleoids are change dynamically, but the molecular details remain poorly understood. In this study, we constructed a custom siRNA library targeting 1,164 human mitochondria-related genes, and from live-imaging-based screening of HeLa cells, we identified that mitochondria calcium uniporter (MCU), a pore-forming subunit of the mitochondrial Ca2+ channel, is involved in nucleoid morphology. We found that suppression of MCU by RNAi induced the formation of highly enlarged nucleoids as well as respiratory dysfunction and that the re-introduction of MCU or treatment with Ca2+ ionophore recovered the enlarged nucleoid morphology. These results suggest that mitochondrial Ca2+ uptake via MCU is associated with nucleoid morphology. The constructed siRNA library might be widely applied to analyze the roles of mitochondrial proteins in various cellular events, making it useful to understand the multifaceted functions of mitochondria in human cells.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.