Mengyang Du, Xi Yang, Ruixiu Zhang, Na Yu, Liying Peng, Jiawen Lin, Xue Yan, Yiming Wu, Shihua Bao
{"title":"A relative-independent haplotype derivation method applied for noninvasive prenatal testing for chromosomal rearrangements in a pregnant carrier.","authors":"Mengyang Du, Xi Yang, Ruixiu Zhang, Na Yu, Liying Peng, Jiawen Lin, Xue Yan, Yiming Wu, Shihua Bao","doi":"10.1007/s00438-025-02225-x","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to perform noninvasive prenatal testing for structural chromosomal rearrangements (NIPT-SR) for a female pregnant proband carrying a t(4;8) balanced translocation, whose husband exhibited a normal karyotype. NIPT-SR could accurately detect transmission status of structural rearrangements in fetus through Hidden Markov Model (HMM) analysis, which requires the construction of parental haplotypes. To address the challenge of lacking genetic information from other family members of this proband, we developed a novel strategy to infer the fetal inheritance of structural variants by integrating Oxford Nanopore Technologies (ONT) with the NIPT-SR approach. Long-read sequencing was performed on the proband to directly detect the translocation and nearby single nucleotide polymorphisms (SNPs), and to link the structural variants with phased haplotypes. NIPT-SR method was used to infer the fetal inheritance of the constructed haplotypes and to evaluate the potential presence of unbalanced translocation in the fetus. Noninvasive prenatal testing (NIPT) was performed at 12 weeks of gestation, followed by copy number variation sequencing (CNV-seq) and karyotype analysis after birth respectively to confirm the accuracy of NIPT-SR results. Using nanopore sequencing, we identified the precise locations of the breakpoint junctions and successfully established the SNP-based haplotypes that were linked to the breakpoints on chr4 and chr8, without the need for retrieving genetic information of other family members. Haplotype-based analysis of cell-free DNA (cfDNA) indicated that the fetus inherited the normal haplotypes, which was consistent with the NIPT results and confirmed by the postnatal CNV-seq and karyotype analysis. In conclusion, the NIPT-SR method coupled with ONT platform could be used to perform NIPT-SR for those who carries balanced translocation circumventing the need for other family members as reference, providing an important supplement to birth defects prevention.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"300 1","pages":"19"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-025-02225-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to perform noninvasive prenatal testing for structural chromosomal rearrangements (NIPT-SR) for a female pregnant proband carrying a t(4;8) balanced translocation, whose husband exhibited a normal karyotype. NIPT-SR could accurately detect transmission status of structural rearrangements in fetus through Hidden Markov Model (HMM) analysis, which requires the construction of parental haplotypes. To address the challenge of lacking genetic information from other family members of this proband, we developed a novel strategy to infer the fetal inheritance of structural variants by integrating Oxford Nanopore Technologies (ONT) with the NIPT-SR approach. Long-read sequencing was performed on the proband to directly detect the translocation and nearby single nucleotide polymorphisms (SNPs), and to link the structural variants with phased haplotypes. NIPT-SR method was used to infer the fetal inheritance of the constructed haplotypes and to evaluate the potential presence of unbalanced translocation in the fetus. Noninvasive prenatal testing (NIPT) was performed at 12 weeks of gestation, followed by copy number variation sequencing (CNV-seq) and karyotype analysis after birth respectively to confirm the accuracy of NIPT-SR results. Using nanopore sequencing, we identified the precise locations of the breakpoint junctions and successfully established the SNP-based haplotypes that were linked to the breakpoints on chr4 and chr8, without the need for retrieving genetic information of other family members. Haplotype-based analysis of cell-free DNA (cfDNA) indicated that the fetus inherited the normal haplotypes, which was consistent with the NIPT results and confirmed by the postnatal CNV-seq and karyotype analysis. In conclusion, the NIPT-SR method coupled with ONT platform could be used to perform NIPT-SR for those who carries balanced translocation circumventing the need for other family members as reference, providing an important supplement to birth defects prevention.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.