PyBootNet: a python package for bootstrapping and network construction.

IF 2.3 3区 生物学 Q2 MULTIDISCIPLINARY SCIENCES PeerJ Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.7717/peerj.18915
Shayan R Akhavan, Scott T Kelley
{"title":"PyBootNet: a python package for bootstrapping and network construction.","authors":"Shayan R Akhavan, Scott T Kelley","doi":"10.7717/peerj.18915","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Network analysis has emerged as a tool for investigating interactions among species in a community, interactions among genes or proteins within cells, or interactions across different types of data (<i>e.g.</i>, genes and metabolites). Two aspects of networks that are difficult to assess are the statistical robustness of the network and whether networks from two different biological systems or experimental conditions differ.</p><p><strong>Methods: </strong>PyBootNet is a user-friendly Python package that integrates bootstrapping analysis and correlation network construction. The package offers functions for generating bootstrapped network metrics, statistically comparing network metrics among datasets, and visualizing bootstrapped networks. PyBootNet is designed to be accessible and efficient with minimal dependencies and straightforward input requirements. To demonstrate its functionality, we applied PyBootNet to compare correlation networks derived from study using a mouse model to investigate the impacts of Polycystic Ovary Syndrome (PCOS) on the gut microbiome. PyBootNet includes functions for data preprocessing, bootstrapping, correlation matrix calculation, network statistics computation, and network visualization.</p><p><strong>Results: </strong>We show that PyBootNet generates robust bootstrapped network metrics and identifies significant differences in one or more network metrics between pairs of networks. Our analysis of the previously published PCOS gut microbiome data also showed that our network analysis uncovered patterns and treatment effects missed in the original study. PyBootNet provides a powerful and extendible Python bioinformatics solution for bootstrapping analysis and network construction that can be applied to microbes, genes, metabolites and other biological data appropriate for network correlation comparison and analysis.</p>","PeriodicalId":19799,"journal":{"name":"PeerJ","volume":"13 ","pages":"e18915"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7717/peerj.18915","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Network analysis has emerged as a tool for investigating interactions among species in a community, interactions among genes or proteins within cells, or interactions across different types of data (e.g., genes and metabolites). Two aspects of networks that are difficult to assess are the statistical robustness of the network and whether networks from two different biological systems or experimental conditions differ.

Methods: PyBootNet is a user-friendly Python package that integrates bootstrapping analysis and correlation network construction. The package offers functions for generating bootstrapped network metrics, statistically comparing network metrics among datasets, and visualizing bootstrapped networks. PyBootNet is designed to be accessible and efficient with minimal dependencies and straightforward input requirements. To demonstrate its functionality, we applied PyBootNet to compare correlation networks derived from study using a mouse model to investigate the impacts of Polycystic Ovary Syndrome (PCOS) on the gut microbiome. PyBootNet includes functions for data preprocessing, bootstrapping, correlation matrix calculation, network statistics computation, and network visualization.

Results: We show that PyBootNet generates robust bootstrapped network metrics and identifies significant differences in one or more network metrics between pairs of networks. Our analysis of the previously published PCOS gut microbiome data also showed that our network analysis uncovered patterns and treatment effects missed in the original study. PyBootNet provides a powerful and extendible Python bioinformatics solution for bootstrapping analysis and network construction that can be applied to microbes, genes, metabolites and other biological data appropriate for network correlation comparison and analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ
PeerJ MULTIDISCIPLINARY SCIENCES-
CiteScore
4.70
自引率
3.70%
发文量
1665
审稿时长
10 weeks
期刊介绍: PeerJ is an open access peer-reviewed scientific journal covering research in the biological and medical sciences. At PeerJ, authors take out a lifetime publication plan (for as little as $99) which allows them to publish articles in the journal for free, forever. PeerJ has 5 Nobel Prize Winners on the Board; they have won several industry and media awards; and they are widely recognized as being one of the most interesting recent developments in academic publishing.
期刊最新文献
Assessing the quality of life among African medical and health science students using the WHOQOL-BREF tool. Berberine-induced browning and energy metabolism: mechanisms and implications. Effect of intercropping Lolium perenne in Ziziphus jujuba orchards on soil quality in the canopy. New record of Frilled shark Chlamydoselachus anguineus Garman, 1884 (Chondrichthyes: Hexanchiformes) in the South Pacific Ocean. Sex differences in anaerobic performance in CrossFit® athletes: a comparison of three different all-out tests.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1