Simultaneous removal of cationic and anionic dyes by highly efficient and recyclable ZIF-67/expanded vermiculite (ZIF-67/EV) composites.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2025-02-01 DOI:10.1002/wer.70027
Salman Ahmadipouya, Hossein Molavi
{"title":"Simultaneous removal of cationic and anionic dyes by highly efficient and recyclable ZIF-67/expanded vermiculite (ZIF-67/EV) composites.","authors":"Salman Ahmadipouya, Hossein Molavi","doi":"10.1002/wer.70027","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the synthesis of composite materials using Zeolitic imidazolate frameworks (ZIF-67) nanoparticles as an effective adsorbent, along with different concentrations (2-10%) of thermally expanded vermiculite (EV) as a low-cost and natural adsorbent substrate. The pristine materials and their composites were fully characterized using XRD, FTIR, BET, SEM, zeta potential, and EDS techniques. The pseudo-second-order kinetic model described both organic dyes' adsorption on synthesized adsorbents. Accordingly, the calculated adsorption capacities of Congo Red (CR) and Malachite Green (MG) dyes over the synthesized adsorbents were found to be about 22.72 and 49.02 mg/g for pure EV, 100 and 100 mg/g for pure ZIF-67, 90.91 and 100 mg/g for ZIF-67/EV-2, 100 and 100 mg/g for ZIF-67/EV-5, 95.24 and 99.01 mg/g for ZIF-67/EV-7, and 92.59 and 97.09 mg/g for ZIF-67/EV-10, respectively. The Langmuir isotherm model fits experimental isotherm data best in the studied temperature range (298-313 K). Among the synthesized adsorbent materials, the ZIF-67/EV-5 composite (containing 5% EV flakes) showed the highest maximum adsorption capacities of 1428.6 and 1114.2 mg/g for MG and CR dyes at pH 7 and 298 K. Moreover, it showed the highest removal efficiency (up to 99.5%) toward both cationic MG and anionic CR dyes in the binary mixture of both dyes. Finally, the regeneration and recyclability of this composite showed a 12% decrease in dye removal after five adsorption cycles. The synthesized ZIF-67/EV composites may therefore be used as efficient and inexpensive adsorbent materials for the simultaneous removal of cationic and anionic dyes from contaminated water. PRACTITIONER POINTS: ZIF-67/expanded vermiculite composites were synthesized and used to simultaneously remove cationic and anionic dyes from wastewater. Kinetics, isotherms, and thermodynamics of adsorption were studied showing good removal of both dyes. The ZIF-67/EV-5 composite achieved maximum adsorption capacities of 1428.6 and 1114.2 mg/g for cationic Malachite Green and anionic Congo Red dyes, respectively. Various interactions like π-π stacking and coordination are proposed as mechanisms of adsorption. The composite showed good selectivity in separating dyes and maintained high removal efficiency even after 5 reuse cycles.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"97 2","pages":"e70027"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.70027","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the synthesis of composite materials using Zeolitic imidazolate frameworks (ZIF-67) nanoparticles as an effective adsorbent, along with different concentrations (2-10%) of thermally expanded vermiculite (EV) as a low-cost and natural adsorbent substrate. The pristine materials and their composites were fully characterized using XRD, FTIR, BET, SEM, zeta potential, and EDS techniques. The pseudo-second-order kinetic model described both organic dyes' adsorption on synthesized adsorbents. Accordingly, the calculated adsorption capacities of Congo Red (CR) and Malachite Green (MG) dyes over the synthesized adsorbents were found to be about 22.72 and 49.02 mg/g for pure EV, 100 and 100 mg/g for pure ZIF-67, 90.91 and 100 mg/g for ZIF-67/EV-2, 100 and 100 mg/g for ZIF-67/EV-5, 95.24 and 99.01 mg/g for ZIF-67/EV-7, and 92.59 and 97.09 mg/g for ZIF-67/EV-10, respectively. The Langmuir isotherm model fits experimental isotherm data best in the studied temperature range (298-313 K). Among the synthesized adsorbent materials, the ZIF-67/EV-5 composite (containing 5% EV flakes) showed the highest maximum adsorption capacities of 1428.6 and 1114.2 mg/g for MG and CR dyes at pH 7 and 298 K. Moreover, it showed the highest removal efficiency (up to 99.5%) toward both cationic MG and anionic CR dyes in the binary mixture of both dyes. Finally, the regeneration and recyclability of this composite showed a 12% decrease in dye removal after five adsorption cycles. The synthesized ZIF-67/EV composites may therefore be used as efficient and inexpensive adsorbent materials for the simultaneous removal of cationic and anionic dyes from contaminated water. PRACTITIONER POINTS: ZIF-67/expanded vermiculite composites were synthesized and used to simultaneously remove cationic and anionic dyes from wastewater. Kinetics, isotherms, and thermodynamics of adsorption were studied showing good removal of both dyes. The ZIF-67/EV-5 composite achieved maximum adsorption capacities of 1428.6 and 1114.2 mg/g for cationic Malachite Green and anionic Congo Red dyes, respectively. Various interactions like π-π stacking and coordination are proposed as mechanisms of adsorption. The composite showed good selectivity in separating dyes and maintained high removal efficiency even after 5 reuse cycles.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Enhancing naphthenic acid attenuation in mesocosm wetlands: The role of temperature, plant species, and microbial communities. Estimating water scarcity risks under climate change: A provincial perspective in China. Evaluation of biofilm scouring methods on the nitrification efficiency in a pilot-scale membrane-aerated biofilm reactor. Better left unsettled: Suspended air flotation for footprint-optimized management of thin primary and blended solids. Correction to "The application of duckweed (Lemna minor) and freshwater mussels (Anodonta cygnea) as living biofilters integrating with a filtration system to maintain water quality in juvenile trout (Oncorhynchus mykiss) rearing using the small scale RAS system".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1