Xin Wang, Shihui Wu, Yuxin Jiang, Zihao Yuan, Jian Liu, Shu Jing, Jiale Liu, Jinghui Sun, Chunmei Wang, Dan Wang, He Li
{"title":"Anwulignan alleviates IRI by the activation of Nrf2/HO-1 signaling pathway and inhibiting NLRP3-caspase-1-GSDMD-mediated pyroptosis in rats.","authors":"Xin Wang, Shihui Wu, Yuxin Jiang, Zihao Yuan, Jian Liu, Shu Jing, Jiale Liu, Jinghui Sun, Chunmei Wang, Dan Wang, He Li","doi":"10.1016/j.tice.2025.102775","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia/reperfusion injury (IRI) is caused by the reduced blood flow and oxygen level due to the renal artery blockage. The effect of Schisandrae Sphenantherae Fructusandra fruit anwulignan (AN) on the renal IRI injury in rats was investigated. Four rat (Male SD) groups were set, including sham, IRI, sham+AN and IRI+AN groups. This experiment confirmed that AN could reduce renal IRI injury by detecting some biomarkers such as Cre, BUN, LDH, HIF-1α, KIM-1, NGAL, and AIM, which showed decreased levels. AN could increase GSH, CAT, T-AOC, and SOD levels, and decrease MDA and ROS levels in rat kidney tissue, demonstrating that AN can improve oxidative stress damage. In addition, AN diminished the total quantity of TNF-α, IL-1β, IL-6, IL-8, and IL-18 in the renal tissue of rats. In rats with renal IRI, the contents of p-Nrf2 and HO-1 proteins engaged in the Nrf2/HO-1 antioxidant controlled system were increased, and the expression level of Keap1 was diminished. NLRP3, ASC, Caspase-1, GSDMD, GSDMD-N, IL-18, and IL-1β protein levels in kidney tissues decreased significantly in AN group. The results indicate that AN can alleviate renal IRI by reducing the oxidative stress damage via activating the Nrf2/HO-1 signaling pathway and inhibiting NLRP3-Caspase-1-GSDMD-mediated pyroptosis in rats.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102775"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2025.102775","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemia/reperfusion injury (IRI) is caused by the reduced blood flow and oxygen level due to the renal artery blockage. The effect of Schisandrae Sphenantherae Fructusandra fruit anwulignan (AN) on the renal IRI injury in rats was investigated. Four rat (Male SD) groups were set, including sham, IRI, sham+AN and IRI+AN groups. This experiment confirmed that AN could reduce renal IRI injury by detecting some biomarkers such as Cre, BUN, LDH, HIF-1α, KIM-1, NGAL, and AIM, which showed decreased levels. AN could increase GSH, CAT, T-AOC, and SOD levels, and decrease MDA and ROS levels in rat kidney tissue, demonstrating that AN can improve oxidative stress damage. In addition, AN diminished the total quantity of TNF-α, IL-1β, IL-6, IL-8, and IL-18 in the renal tissue of rats. In rats with renal IRI, the contents of p-Nrf2 and HO-1 proteins engaged in the Nrf2/HO-1 antioxidant controlled system were increased, and the expression level of Keap1 was diminished. NLRP3, ASC, Caspase-1, GSDMD, GSDMD-N, IL-18, and IL-1β protein levels in kidney tissues decreased significantly in AN group. The results indicate that AN can alleviate renal IRI by reducing the oxidative stress damage via activating the Nrf2/HO-1 signaling pathway and inhibiting NLRP3-Caspase-1-GSDMD-mediated pyroptosis in rats.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.