Brains are Probabilistic, Electrophysiologically Intricate and Triune: A Biased- Random Walk Perspective on Computational Neuroscience.

IF 1.2 4区 心理学 Q3 PSYCHOLOGY, MULTIDISCIPLINARY International Journal of Psychological Research Pub Date : 2024-08-21 eCollection Date: 2024-07-01 DOI:10.21500/20112084.7397
Juan Fernando Gómez-Molina
{"title":"Brains are Probabilistic, Electrophysiologically Intricate and Triune: A Biased- Random Walk Perspective on Computational Neuroscience.","authors":"Juan Fernando Gómez-Molina","doi":"10.21500/20112084.7397","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of a unified theory that captures the intricacies of the brain and mind continues to be a significant challenge in theoretical neuroscience. This paper presents a novel, triune framework that utilizes the concept of collective biased random walk (cBRW). Our approach strives to transcend biological specifics, offering a high-level abstraction that remains general and applicable across various neural phenomena. Despite the solid traditional foundation of computational neuroscience, the intricate delicacy of neural processes calls for a renewed probabilistic approach. We aim to utilize the intuitive nature of probability concepts -such as the probability of localization and state, and uniform probability distribution- to study the stochastic organization of electric charges and signals in the brain. This electrophysiological intricacy emerges from the seemingly paradoxical reality that tiny electric events, while random, collectively give rise to predictable, long-range oscillations. These oscillations manifest in three groups of activation states. Our framework categorizes the brain as a triune system, accommodating classical, semiclassical, and non-classical interpretations of both probabilistic phenomena and cBRW models, alongside three groups of states. We conclude that by appreciating, rather than overlooking, the tiny random walks of electric charges and signals in the brain, we can gain a triune mathematical foundation for theoretical brain science, the powerful capabilities of this organ, and the electromagnetic interfaces we can develop.</p>","PeriodicalId":46542,"journal":{"name":"International Journal of Psychological Research","volume":"17 2","pages":"100-112"},"PeriodicalIF":1.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804126/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Psychological Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.21500/20112084.7397","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of a unified theory that captures the intricacies of the brain and mind continues to be a significant challenge in theoretical neuroscience. This paper presents a novel, triune framework that utilizes the concept of collective biased random walk (cBRW). Our approach strives to transcend biological specifics, offering a high-level abstraction that remains general and applicable across various neural phenomena. Despite the solid traditional foundation of computational neuroscience, the intricate delicacy of neural processes calls for a renewed probabilistic approach. We aim to utilize the intuitive nature of probability concepts -such as the probability of localization and state, and uniform probability distribution- to study the stochastic organization of electric charges and signals in the brain. This electrophysiological intricacy emerges from the seemingly paradoxical reality that tiny electric events, while random, collectively give rise to predictable, long-range oscillations. These oscillations manifest in three groups of activation states. Our framework categorizes the brain as a triune system, accommodating classical, semiclassical, and non-classical interpretations of both probabilistic phenomena and cBRW models, alongside three groups of states. We conclude that by appreciating, rather than overlooking, the tiny random walks of electric charges and signals in the brain, we can gain a triune mathematical foundation for theoretical brain science, the powerful capabilities of this organ, and the electromagnetic interfaces we can develop.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Psychological Research
International Journal of Psychological Research PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
2.30
自引率
9.10%
发文量
22
审稿时长
16 weeks
期刊介绍: The International Journal of Psychological Research (Int.j.psychol.res) is the Faculty of Psychology’s official publication of San Buenaventura University in Medellin, Colombia. Int.j.psychol.res relies on a vast and diverse theoretical and thematic publishing material, which includes unpublished productions of diverse psychological issues and behavioral human areas such as psychiatry, neurosciences, mental health, among others.
期刊最新文献
EEG-Based Alcohol Detection System for Driver Monitoring. Flexible Management, Subjectivity, and Paradoxical Work Experiences: The Case of Lean Management in Chilean Retail. A Deep Cascade Architecture for Stroke Lesion Segmentation and Synthetic Parametric Map Generation over CT Studies. A Volumetric Deep Architecture to Discriminate Parkinsonian Patterns from Intermediate Pose Representations. Monitoring Learning in Nursing using the Electroencephalogram and Intrinsic Motivation Inventory-IMI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1