Elucidating Infectious Causes of Fever of Unknown Origin: A Laboratory-Based Observational Study of Patients with Suspected Ebola Virus Disease, Guinea, 2014.
Ignacio Postigo-Hidalgo, N'Faly Magassouba, Nadine Krüger, Marie Louise Guilavogui, Detlev H Kruger, Boris Klempa, Jan Felix Drexler
{"title":"Elucidating Infectious Causes of Fever of Unknown Origin: A Laboratory-Based Observational Study of Patients with Suspected Ebola Virus Disease, Guinea, 2014.","authors":"Ignacio Postigo-Hidalgo, N'Faly Magassouba, Nadine Krüger, Marie Louise Guilavogui, Detlev H Kruger, Boris Klempa, Jan Felix Drexler","doi":"10.1093/infdis/jiae637","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The etiology of fever of unknown origin (FUO) in sub-Saharan Africa often remains unexplained.</p><p><strong>Methods: </strong>We performed a retrospective laboratory-based observational study of 550 Guinean patients with FUO testing negative for Ebola virus from March to December 2014. Blood-borne pathogens were diagnosed by polymerase chain reaction (PCR) or reverse transcription-PCR (RT-PCR), serologic tests, and targeted and unbiased high-throughput sequencing (HTS).</p><p><strong>Results: </strong>In 275 of 550 individuals, we found evidence of ≥1 pathogen by molecular methods. We identified Plasmodium in 35.6% of patients via PCR, with P falciparum constituting 96.4% of these cases. Pathogenic bacteria, including Salmonella and Klebsiella, were detected in 18.4% of patients through PCR and HTS. Resistance determinants against first-line antibiotics were found in 26.9% of pooled sera by HTS. Yellow fever, Lassa, and Ebola viruses were detected in 5.8% of patients by RT-PCR; HTS-guided RT-PCR confirmed Orungo virus infection in 1 patient. Phylogenetic analyses revealed that the viral genomes matched the available genomic data in terms of location and time. Indirect immunofluorescence assays revealed immunoglobulin M antibodies against yellow fever, Ebola, dengue, West Nile, and Crimean Congo hemorrhagic fever viruses in 11 of 100 patients who were PCR or RT-PCR negative. One in 5 patients who were infected presented coinfections, predominantly malaria associated with sepsis-causing bacteria, in adults (12.1%) and children (12.5%), whereas viral coinfections were rare. Patients presented fever (74.7%), asthenia (67.7%), emesis (38.2%), diarrhea (28.3%), and hemorrhage (11.8%), without clear etiology associations.</p><p><strong>Conclusions: </strong>An exhaustive laboratory investigation elucidated infectious causes of FUO in 52.3% of patients. Quality control and strengthening laboratory capacities in sub-Saharan Africa are essential for patient care, outbreak response, and regionally appropriate diagnostics.</p>","PeriodicalId":50179,"journal":{"name":"Journal of Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/infdis/jiae637","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The etiology of fever of unknown origin (FUO) in sub-Saharan Africa often remains unexplained.
Methods: We performed a retrospective laboratory-based observational study of 550 Guinean patients with FUO testing negative for Ebola virus from March to December 2014. Blood-borne pathogens were diagnosed by polymerase chain reaction (PCR) or reverse transcription-PCR (RT-PCR), serologic tests, and targeted and unbiased high-throughput sequencing (HTS).
Results: In 275 of 550 individuals, we found evidence of ≥1 pathogen by molecular methods. We identified Plasmodium in 35.6% of patients via PCR, with P falciparum constituting 96.4% of these cases. Pathogenic bacteria, including Salmonella and Klebsiella, were detected in 18.4% of patients through PCR and HTS. Resistance determinants against first-line antibiotics were found in 26.9% of pooled sera by HTS. Yellow fever, Lassa, and Ebola viruses were detected in 5.8% of patients by RT-PCR; HTS-guided RT-PCR confirmed Orungo virus infection in 1 patient. Phylogenetic analyses revealed that the viral genomes matched the available genomic data in terms of location and time. Indirect immunofluorescence assays revealed immunoglobulin M antibodies against yellow fever, Ebola, dengue, West Nile, and Crimean Congo hemorrhagic fever viruses in 11 of 100 patients who were PCR or RT-PCR negative. One in 5 patients who were infected presented coinfections, predominantly malaria associated with sepsis-causing bacteria, in adults (12.1%) and children (12.5%), whereas viral coinfections were rare. Patients presented fever (74.7%), asthenia (67.7%), emesis (38.2%), diarrhea (28.3%), and hemorrhage (11.8%), without clear etiology associations.
Conclusions: An exhaustive laboratory investigation elucidated infectious causes of FUO in 52.3% of patients. Quality control and strengthening laboratory capacities in sub-Saharan Africa are essential for patient care, outbreak response, and regionally appropriate diagnostics.
期刊介绍:
Published continuously since 1904, The Journal of Infectious Diseases (JID) is the premier global journal for original research on infectious diseases. The editors welcome Major Articles and Brief Reports describing research results on microbiology, immunology, epidemiology, and related disciplines, on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune responses. JID is an official publication of the Infectious Diseases Society of America.