Mahsa Shakeri, Ahmad Mostaar, Arash Zare Sadeghi, Seyyed Mohammad Hosseini, Ali Yaghobi Joybari, Hossein Ghadiri
{"title":"A Comprehensive Evaluation of Radiomic Features in Normal Brain Magnetic Resonance Imaging: Investigating Robustness and Region Variations.","authors":"Mahsa Shakeri, Ahmad Mostaar, Arash Zare Sadeghi, Seyyed Mohammad Hosseini, Ali Yaghobi Joybari, Hossein Ghadiri","doi":"10.4103/jmp.jmp_149_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite extensive research on various brain diseases, a few studies have focused on radiomic feature distribution in healthy brain images. The present study applied a novel radiomic framework to investigate the robustness and baseline values of radiomic features in normal brain magnetic resonance imaging (MRIs) regions.</p><p><strong>Materials and methods: </strong>Analyses were performed on T1 and T2 images including 276 normal brains and 14 healthy volunteers were scanned with three scanners using the same protocols. The images were divided into 1024 three-dimensional nonoverlap patches with the same pixel size. Seven patches located in the thalamus, putamen, hippocampus and brain stem were selected as volume of interest (VOI). Eighty-five radiomic features were generated. To investigate the variation of features across VOIs, the analysis of variance was performed and coefficient of variation (COV) and intraclass correlation coefficient (ICC) were explored to examine the features repeatability.</p><p><strong>Results: </strong>Thalamus (right and left) and hippocampus (left) resulted in more stable features (COV ≤ 6%) in T1 and T2 images, respectively. The inter-scanner ICC analysis demonstrated the features of T2 sequences represented more repeatable results and the brain stem and thalamus (both T1 and T2) showed particularly high repeatability (higher ICC values). Robust results (ICC ≥ 0.9) were identified for energy and range features of the first order class and several textures features across different brain regions.</p><p><strong>Conclusion: </strong>Our results indicated the baselines of the repeatable texture features in healthy brain structural MRI highlighting inter-scanner stability. According to the findings, MRI sequencing and VOI location impact feature robustness and should be considered in brain radiomic studies.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"608-622"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801087/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_149_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Despite extensive research on various brain diseases, a few studies have focused on radiomic feature distribution in healthy brain images. The present study applied a novel radiomic framework to investigate the robustness and baseline values of radiomic features in normal brain magnetic resonance imaging (MRIs) regions.
Materials and methods: Analyses were performed on T1 and T2 images including 276 normal brains and 14 healthy volunteers were scanned with three scanners using the same protocols. The images were divided into 1024 three-dimensional nonoverlap patches with the same pixel size. Seven patches located in the thalamus, putamen, hippocampus and brain stem were selected as volume of interest (VOI). Eighty-five radiomic features were generated. To investigate the variation of features across VOIs, the analysis of variance was performed and coefficient of variation (COV) and intraclass correlation coefficient (ICC) were explored to examine the features repeatability.
Results: Thalamus (right and left) and hippocampus (left) resulted in more stable features (COV ≤ 6%) in T1 and T2 images, respectively. The inter-scanner ICC analysis demonstrated the features of T2 sequences represented more repeatable results and the brain stem and thalamus (both T1 and T2) showed particularly high repeatability (higher ICC values). Robust results (ICC ≥ 0.9) were identified for energy and range features of the first order class and several textures features across different brain regions.
Conclusion: Our results indicated the baselines of the repeatable texture features in healthy brain structural MRI highlighting inter-scanner stability. According to the findings, MRI sequencing and VOI location impact feature robustness and should be considered in brain radiomic studies.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.