Revolutionizing prostate cancer therapy: Artificial intelligence – Based nanocarriers for precision diagnosis and treatment

IF 5.5 2区 医学 Q1 HEMATOLOGY Critical reviews in oncology/hematology Pub Date : 2025-02-07 DOI:10.1016/j.critrevonc.2025.104653
Maryam Shirzad , Afsaneh Salahvarzi , Sobia Razzaq , Mohammad Javad Javid-Naderi , Abbas Rahdar , Sonia Fathi-karkan , Azam Ghadami , Zelal Kharaba , Luiz Fernando Romanholo Ferreira
{"title":"Revolutionizing prostate cancer therapy: Artificial intelligence – Based nanocarriers for precision diagnosis and treatment","authors":"Maryam Shirzad ,&nbsp;Afsaneh Salahvarzi ,&nbsp;Sobia Razzaq ,&nbsp;Mohammad Javad Javid-Naderi ,&nbsp;Abbas Rahdar ,&nbsp;Sonia Fathi-karkan ,&nbsp;Azam Ghadami ,&nbsp;Zelal Kharaba ,&nbsp;Luiz Fernando Romanholo Ferreira","doi":"10.1016/j.critrevonc.2025.104653","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.</div></div>","PeriodicalId":11358,"journal":{"name":"Critical reviews in oncology/hematology","volume":"208 ","pages":"Article 104653"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in oncology/hematology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1040842825000411","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Prostate cancer is one of the major health challenges in the world and needs novel therapeutic approaches to overcome the limitations of conventional treatment. This review delineates the transformative potential of artificial intelligence (AL) in enhancing nanocarrier-based drug delivery systems for prostate cancer therapy. With its ability to optimize nanocarrier design and predict drug delivery kinetics, AI has revolutionized personalized treatment planning in oncology. We discuss how AI can be integrated with nanotechnology to address challenges related to tumor heterogeneity, drug resistance, and systemic toxicity. Emphasis is placed on strong AI-driven advancements in the design of nanocarriers, structural optimization, targeting of ligands, and pharmacokinetics. We also give an overview of how AI can better predict toxicity, reduce costs, and enable personalized medicine. While challenges persist in the way of data accessibility, regulatory hurdles, and interactions with the immune system, future directions based on explainable AI (XAI) models, integration of multimodal data, and green nanocarrier designs promise to move the field forward. Convergence between AI and nanotechnology has been one key step toward safer, more effective, and patient-tailored cancer therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.00
自引率
3.20%
发文量
213
审稿时长
55 days
期刊介绍: Critical Reviews in Oncology/Hematology publishes scholarly, critical reviews in all fields of oncology and hematology written by experts from around the world. Critical Reviews in Oncology/Hematology is the Official Journal of the European School of Oncology (ESO) and the International Society of Liquid Biopsy.
期刊最新文献
The role of cGAS-STING in remodeling the tumor immune microenvironment induced by radiotherapy Predictors of prognosis and overall survival in pediatric mucoepidermoid carcinoma of salivary glands: A systematic review Performance of CpG-oligonucleotide DSP30 and interleukin-2 in the cytogenetic study of mature B-cell neoplasms: A systematic review and meta-analysis Nanobots: The current scenario Molecular features and clinical actionability of gene fusions in colorectal cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1