Sushma N Bhat, Ghanshyam D Jindal, Gajanan D Nagare
{"title":"Development and Validation of Cloud-based Heart Rate Variability Monitor.","authors":"Sushma N Bhat, Ghanshyam D Jindal, Gajanan D Nagare","doi":"10.4103/jmp.jmp_151_24","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>This article introduces a new cloud-based point-of-care system to monitor heart rate variability (HRV).</p><p><strong>Aims: </strong>Medical investigations carried out at dispensaries or hospitals impose substantial physiological and psychological stress (white coat effect), disrupting cardiovascular homeostasis, which can be taken care by point-of-care cloud computing system to facilitate secure patient monitoring.</p><p><strong>Settings and design: </strong>The device employs MAX30102 sensor to collect peripheral pulse signal using photoplethysmography technique. The non-invasive design ensures patient compliance while delivering critical insights into Autonomic Nervous System activity. Preliminary validations indicate the system's potential to enhance clinical outcomes by supporting timely, data-driven therapeutic adjustments based on HRV metrics.</p><p><strong>Subjects and methods: </strong>This article explores the system's development, functionality, and reliability. System designed is validated with peripheral pulse analyzer (PPA), a research product of electronics division, Bhabha Atomic Research Centre.</p><p><strong>Statistical analysis used: </strong>The output of developed HRV monitor (HRVM) is compared using Pearson's correlation and Mann-Whitney U-test with output of PPA. Peak positions and spectrum values are validated using Pearson's correlation, mean error, standard deviation (SD) of error, and range of error. HRV parameters such as total power, mean, peak amplitude, and power in very low frequency, low frequency, and high frequency bands are validated using Mann-Whitney U-test.</p><p><strong>Results: </strong>Pearson's correlation for spectrum values has been found to be more than 0.97 in all the subjects. Mean error, SD of error, and range of error are found to be in acceptable range.</p><p><strong>Conclusions: </strong>Statistical results validate the new HRVM system against PPA for use in cloud computing and point-of-care testing.</p>","PeriodicalId":51719,"journal":{"name":"Journal of Medical Physics","volume":"49 4","pages":"654-660"},"PeriodicalIF":0.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801093/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmp.jmp_151_24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Context: This article introduces a new cloud-based point-of-care system to monitor heart rate variability (HRV).
Aims: Medical investigations carried out at dispensaries or hospitals impose substantial physiological and psychological stress (white coat effect), disrupting cardiovascular homeostasis, which can be taken care by point-of-care cloud computing system to facilitate secure patient monitoring.
Settings and design: The device employs MAX30102 sensor to collect peripheral pulse signal using photoplethysmography technique. The non-invasive design ensures patient compliance while delivering critical insights into Autonomic Nervous System activity. Preliminary validations indicate the system's potential to enhance clinical outcomes by supporting timely, data-driven therapeutic adjustments based on HRV metrics.
Subjects and methods: This article explores the system's development, functionality, and reliability. System designed is validated with peripheral pulse analyzer (PPA), a research product of electronics division, Bhabha Atomic Research Centre.
Statistical analysis used: The output of developed HRV monitor (HRVM) is compared using Pearson's correlation and Mann-Whitney U-test with output of PPA. Peak positions and spectrum values are validated using Pearson's correlation, mean error, standard deviation (SD) of error, and range of error. HRV parameters such as total power, mean, peak amplitude, and power in very low frequency, low frequency, and high frequency bands are validated using Mann-Whitney U-test.
Results: Pearson's correlation for spectrum values has been found to be more than 0.97 in all the subjects. Mean error, SD of error, and range of error are found to be in acceptable range.
Conclusions: Statistical results validate the new HRVM system against PPA for use in cloud computing and point-of-care testing.
期刊介绍:
JOURNAL OF MEDICAL PHYSICS is the official journal of Association of Medical Physicists of India (AMPI). The association has been bringing out a quarterly publication since 1976. Till the end of 1993, it was known as Medical Physics Bulletin, which then became Journal of Medical Physics. The main objective of the Journal is to serve as a vehicle of communication to highlight all aspects of the practice of medical radiation physics. The areas covered include all aspects of the application of radiation physics to biological sciences, radiotherapy, radiodiagnosis, nuclear medicine, dosimetry and radiation protection. Papers / manuscripts dealing with the aspects of physics related to cancer therapy / radiobiology also fall within the scope of the journal.