Cong Liu, Qun Lu, Qi Xi, Shuxin Xiao, Jiangbo Du, Rui Qin, Jinghan Wang, Bo Xu, Xiumei Han, Kun Zhou, Shiyao Tao, Hong Lv, Yangqian Jiang, Tao Jiang, Kan Ye, Guangfu Jin, Hongxia Ma, Yankai Xia, Hongbing Shen, Xingyin Liu, Yuan Lin, Zhibin Hu
{"title":"Varying Bifidobacterium species in the maternal-infant gut microbiota correlate with distinct early neurodevelopmental outcomes.","authors":"Cong Liu, Qun Lu, Qi Xi, Shuxin Xiao, Jiangbo Du, Rui Qin, Jinghan Wang, Bo Xu, Xiumei Han, Kun Zhou, Shiyao Tao, Hong Lv, Yangqian Jiang, Tao Jiang, Kan Ye, Guangfu Jin, Hongxia Ma, Yankai Xia, Hongbing Shen, Xingyin Liu, Yuan Lin, Zhibin Hu","doi":"10.1016/j.jgg.2025.01.015","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of mother-infant microbiota on neurodevelopment is an area of interest, but longitudinal studies are scarce. Using a cohort of 520 families from the Jiangsu birth cohort in China, we reveal that the maternal gut microbiota during early pregnancy play a substantial role, accounting for 3.34% of the variance in offspring neurodevelopmental scores. This contribution is notably higher than the 1.24% attributed to the infants' own microbiota at 1 year of age, underscoring the significant influence of maternal gut health on early child development. Remarkably, an elevation in maternal Bifidobacterium pseudocatenulatum is linked to decreased cognitive scores, whereas an enrichment of Bifidobacterium longum at 1 year of age is associated with higher cognitive scores. Furthermore, we find that maternal B. pseudocatenulatum is linked to heterolactic fermentation metabolic pathway, while infant B. longum is associated with the Bifidobacterium shunt pathway. In summary, our analysis implies that maternal and infant gut microbiota play a distinct role in neurodevelopment, suggesting potential strategies for improving neurodevelopmental outcomes during early pregnancy or infant development by targeting gut microbiota composition.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2025.01.015","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of mother-infant microbiota on neurodevelopment is an area of interest, but longitudinal studies are scarce. Using a cohort of 520 families from the Jiangsu birth cohort in China, we reveal that the maternal gut microbiota during early pregnancy play a substantial role, accounting for 3.34% of the variance in offspring neurodevelopmental scores. This contribution is notably higher than the 1.24% attributed to the infants' own microbiota at 1 year of age, underscoring the significant influence of maternal gut health on early child development. Remarkably, an elevation in maternal Bifidobacterium pseudocatenulatum is linked to decreased cognitive scores, whereas an enrichment of Bifidobacterium longum at 1 year of age is associated with higher cognitive scores. Furthermore, we find that maternal B. pseudocatenulatum is linked to heterolactic fermentation metabolic pathway, while infant B. longum is associated with the Bifidobacterium shunt pathway. In summary, our analysis implies that maternal and infant gut microbiota play a distinct role in neurodevelopment, suggesting potential strategies for improving neurodevelopmental outcomes during early pregnancy or infant development by targeting gut microbiota composition.
期刊介绍:
The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.