Spectral quantification in different lumen diameters for cardiovascular applications.

Leening P Liu, Martin V Rybertt, Pouyan Pasyar, Nadav Shapira, Harold I Litt, Peter B Noël
{"title":"Spectral quantification in different lumen diameters for cardiovascular applications.","authors":"Leening P Liu, Martin V Rybertt, Pouyan Pasyar, Nadav Shapira, Harold I Litt, Peter B Noël","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The first clinical dual-source photon-counting CT couples high spatial resolution with spectral imaging that is advantageous to imaging of small vessels, such as the coronary arteries, in cardiovascular disease. While both the high spatial resolution and quantification accuracy have been established in PCCT, the effect of lumen size on spectral quantification has not been evaluated. Phantoms with an internal tube diameter ranging from 4 to 12 mm were printed with calcium-based polylactic acid filament to mimic a coronary artery. These diameter phantoms were filled with solutions with iodine concentrations of 2, 5, and 10 mg/mL and scanned with phantoms of varying sizes on a PCCT. Virtual monoenergetic images (VMI) at 70 keV, iodine density maps, and virtual non-contrast maps were measured to determine the effect of lumen diameter on spectral quantification at different iodine concentrations, radiation doses, and phantom sizes. Each evaluated spectral result exhibited consistent quantification at lumen diameters greater than 6 mm with all phantom sizes. VMI 70 keV were within ±15, ±12, and ±4 of VMI 70 keV at a lumen diameter of 12 mm and the small phantom for iodine concentrations of 2, 5, and 10 mg/mL. At a lumen diameter of 4 mm, significant deviations were present in VMI 70 keV, iodine density maps, and VNC with large phantoms, which averaged 55 HU, 1.4 mg/mL, and 61 HU at an iodine concentration of 5 mg/mL, respectively. The consistent spectral results across lumen diameters demonstrated the synergy between high spatial resolution and quantification that will spur the use of quantitative metrics and development of new applications in diagnostic cardiac imaging.</p>","PeriodicalId":90477,"journal":{"name":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","volume":"2024 ","pages":"356-359"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11807396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings. International Conference on Image Formation in X-Ray Computed Tomography","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The first clinical dual-source photon-counting CT couples high spatial resolution with spectral imaging that is advantageous to imaging of small vessels, such as the coronary arteries, in cardiovascular disease. While both the high spatial resolution and quantification accuracy have been established in PCCT, the effect of lumen size on spectral quantification has not been evaluated. Phantoms with an internal tube diameter ranging from 4 to 12 mm were printed with calcium-based polylactic acid filament to mimic a coronary artery. These diameter phantoms were filled with solutions with iodine concentrations of 2, 5, and 10 mg/mL and scanned with phantoms of varying sizes on a PCCT. Virtual monoenergetic images (VMI) at 70 keV, iodine density maps, and virtual non-contrast maps were measured to determine the effect of lumen diameter on spectral quantification at different iodine concentrations, radiation doses, and phantom sizes. Each evaluated spectral result exhibited consistent quantification at lumen diameters greater than 6 mm with all phantom sizes. VMI 70 keV were within ±15, ±12, and ±4 of VMI 70 keV at a lumen diameter of 12 mm and the small phantom for iodine concentrations of 2, 5, and 10 mg/mL. At a lumen diameter of 4 mm, significant deviations were present in VMI 70 keV, iodine density maps, and VNC with large phantoms, which averaged 55 HU, 1.4 mg/mL, and 61 HU at an iodine concentration of 5 mg/mL, respectively. The consistent spectral results across lumen diameters demonstrated the synergy between high spatial resolution and quantification that will spur the use of quantitative metrics and development of new applications in diagnostic cardiac imaging.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CT Reconstruction using Nonlinear Diffusion Posterior Sampling with Detector Blur Modeling. CT Material Decomposition using Spectral Diffusion Posterior Sampling. Joint Material Decomposition and Scatter Estimation for Spectral CT. Spectral Orbits: Combining Spectral Imaging and Non-Circular Orbits for Interventional CBCT. Lifelike and Deformable Lung Phantoms for 4DCT Imaging: A Three-Dimensional Printing Approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1