Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4+Foxp3+ Regulatory T Cell Immunosuppression.

Ying Shao, William Y Yang, Gayani Nanayakkara, Fatma Saaoud, Mohammed Ben Issa, Keman Xu, Yifan Lu, Xiaohua Jiang, Sadia Mohsin, Hong Wang, Xiaofeng Yang
{"title":"Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4<sup>+</sup>Foxp3<sup>+</sup> Regulatory T Cell Immunosuppression.","authors":"Ying Shao, William Y Yang, Gayani Nanayakkara, Fatma Saaoud, Mohammed Ben Issa, Keman Xu, Yifan Lu, Xiaohua Jiang, Sadia Mohsin, Hong Wang, Xiaofeng Yang","doi":"10.53941/ijddp.2024.100022","DOIUrl":null,"url":null,"abstract":"<p><p>Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4<sup>+</sup>Foxp3<sup>+</sup> regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.</p>","PeriodicalId":94047,"journal":{"name":"International journal of drug discovery and pharmacology","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804271/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of drug discovery and pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53941/ijddp.2024.100022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4+Foxp3+ Regulatory T Cell Immunosuppression. Integrins as Drug Targets in Vascular and Related Diseases. Inhibiting the Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Cascade in Cancer and the Heart: for Better or Worse, in Sickness and Health? Breaking Boundaries: Novel Effects of Levosimendan in Various Diseases Development of Proteasome Inhibitors for Cancer Therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1