{"title":"Forest Wildfire Increases the Seasonal Allocation of Soil Labile Carbon Fractions Due to the Transition from Microbial K- to r-Strategists","authors":"Qianqian Qin, Yin Wang, Yanhong Liu","doi":"10.1021/acs.est.4c07470","DOIUrl":null,"url":null,"abstract":"Promoting the formation and accumulation of soil carbon (C) is one of the natural solutions to address climate change, but frequent wildfires increase its uncertainty and challenge. This two-year study deciphered the driving pathways of seasonal and vertical patterns in a soil C pool following a wildfire from a microbial perspective. Results showed that total organic C concentration and stock postfire decreased by 29.9 and 17.5% on average compared with the unburned control, respectively, whereas the allocations of labile C increased by 25.1–45.7%. Fire-induced alterations in labile C fractions were complicated due to their significant seasonality and respective sensitivities. Nonetheless, we emphasized that microbial life-history traits were the decisive mediators of variations and that significant positive linkages existed between labile C and microbial r-selected communities. Fire stimulated lower bacterial and fungal copiotroph/oligotroph ratios and higher ribosomal ribonucleic acid operon copy number, shifting microbes from K- to r-strategists. From integrated soil C pool management indices, fire can be concluded to reduce C stability and accelerate C cycling, but whether the recaptured prevalence of K-strategist over time will modify C processes remains unknown. This study provided a stepping stone for future efforts in accurate C predictions and reasonable C management.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"9 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07470","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Promoting the formation and accumulation of soil carbon (C) is one of the natural solutions to address climate change, but frequent wildfires increase its uncertainty and challenge. This two-year study deciphered the driving pathways of seasonal and vertical patterns in a soil C pool following a wildfire from a microbial perspective. Results showed that total organic C concentration and stock postfire decreased by 29.9 and 17.5% on average compared with the unburned control, respectively, whereas the allocations of labile C increased by 25.1–45.7%. Fire-induced alterations in labile C fractions were complicated due to their significant seasonality and respective sensitivities. Nonetheless, we emphasized that microbial life-history traits were the decisive mediators of variations and that significant positive linkages existed between labile C and microbial r-selected communities. Fire stimulated lower bacterial and fungal copiotroph/oligotroph ratios and higher ribosomal ribonucleic acid operon copy number, shifting microbes from K- to r-strategists. From integrated soil C pool management indices, fire can be concluded to reduce C stability and accelerate C cycling, but whether the recaptured prevalence of K-strategist over time will modify C processes remains unknown. This study provided a stepping stone for future efforts in accurate C predictions and reasonable C management.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.