Forest Wildfire Increases the Seasonal Allocation of Soil Labile Carbon Fractions Due to the Transition from Microbial K- to r-Strategists

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-02-11 DOI:10.1021/acs.est.4c07470
Qianqian Qin, Yin Wang, Yanhong Liu
{"title":"Forest Wildfire Increases the Seasonal Allocation of Soil Labile Carbon Fractions Due to the Transition from Microbial K- to r-Strategists","authors":"Qianqian Qin, Yin Wang, Yanhong Liu","doi":"10.1021/acs.est.4c07470","DOIUrl":null,"url":null,"abstract":"Promoting the formation and accumulation of soil carbon (C) is one of the natural solutions to address climate change, but frequent wildfires increase its uncertainty and challenge. This two-year study deciphered the driving pathways of seasonal and vertical patterns in a soil C pool following a wildfire from a microbial perspective. Results showed that total organic C concentration and stock postfire decreased by 29.9 and 17.5% on average compared with the unburned control, respectively, whereas the allocations of labile C increased by 25.1–45.7%. Fire-induced alterations in labile C fractions were complicated due to their significant seasonality and respective sensitivities. Nonetheless, we emphasized that microbial life-history traits were the decisive mediators of variations and that significant positive linkages existed between labile C and microbial r-selected communities. Fire stimulated lower bacterial and fungal copiotroph/oligotroph ratios and higher ribosomal ribonucleic acid operon copy number, shifting microbes from K- to r-strategists. From integrated soil C pool management indices, fire can be concluded to reduce C stability and accelerate C cycling, but whether the recaptured prevalence of K-strategist over time will modify C processes remains unknown. This study provided a stepping stone for future efforts in accurate C predictions and reasonable C management.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"9 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c07470","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Promoting the formation and accumulation of soil carbon (C) is one of the natural solutions to address climate change, but frequent wildfires increase its uncertainty and challenge. This two-year study deciphered the driving pathways of seasonal and vertical patterns in a soil C pool following a wildfire from a microbial perspective. Results showed that total organic C concentration and stock postfire decreased by 29.9 and 17.5% on average compared with the unburned control, respectively, whereas the allocations of labile C increased by 25.1–45.7%. Fire-induced alterations in labile C fractions were complicated due to their significant seasonality and respective sensitivities. Nonetheless, we emphasized that microbial life-history traits were the decisive mediators of variations and that significant positive linkages existed between labile C and microbial r-selected communities. Fire stimulated lower bacterial and fungal copiotroph/oligotroph ratios and higher ribosomal ribonucleic acid operon copy number, shifting microbes from K- to r-strategists. From integrated soil C pool management indices, fire can be concluded to reduce C stability and accelerate C cycling, but whether the recaptured prevalence of K-strategist over time will modify C processes remains unknown. This study provided a stepping stone for future efforts in accurate C predictions and reasonable C management.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Marine Recalcitrant Dissolved Organic Matter Gained by Processing at Sandy Subterranean Estuaries Observing Anthropogenic and Biogenic CO2 Emissions in Los Angeles Using a Dense Sensor Network Synergistic Treatment of Reverse Osmosis Membrane Biofouling with Quorum Quenching Bacteria and Hitchhiking Phages Extracellular Electron Uptake Mediated by H2O2 Gut Dysbiosis Exacerbates Intestinal Absorption of Cadmium and Arsenic from Cocontaminated Rice in Mice Due to Impaired Intestinal Barrier Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1