Regina T. Nostramo, Paolo L. Sinopoli, Alicia Bao, Sara Metcalf, Lauren M. Peltier, Anita K. Hopper
{"title":"Free introns of tRNAs as complementarity-dependent regulators of gene expression","authors":"Regina T. Nostramo, Paolo L. Sinopoli, Alicia Bao, Sara Metcalf, Lauren M. Peltier, Anita K. Hopper","doi":"10.1016/j.molcel.2025.01.019","DOIUrl":null,"url":null,"abstract":"From archaea to humans, a subset of transfer RNA (tRNA) genes possesses an intron that must be removed from transcribed pre-tRNAs to generate mature, functional tRNAs. Evolutionary conservation of tRNA intron sequences suggests that tRNA introns perform sequence-dependent cellular functions, which are presently unknown. Here, we demonstrate that free introns of tRNAs (fitRNAs) in <em>Saccharomyces cerevisiae</em> serve as small regulatory RNAs that inhibit mRNA levels via long (13–15 nt) statistically improbable stretches of (near) perfect complementarity to mRNA coding regions. The functions of fitRNAs are both constitutive and inducible because genomic deletion or inducible overexpression of tRNA<sup>Ile</sup> introns led to corresponding increases or decreases in levels of complementary mRNAs. Remarkably, although tRNA introns are usually rapidly degraded, fitRNA<sup>Trp</sup> selectively accumulates following oxidative stress, and target mRNA levels decrease. Thus, fitRNAs serve as gene regulators that fine-tune basal mRNA expression and alter the network of mRNAs that respond to oxidative stress.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"13 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.01.019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
From archaea to humans, a subset of transfer RNA (tRNA) genes possesses an intron that must be removed from transcribed pre-tRNAs to generate mature, functional tRNAs. Evolutionary conservation of tRNA intron sequences suggests that tRNA introns perform sequence-dependent cellular functions, which are presently unknown. Here, we demonstrate that free introns of tRNAs (fitRNAs) in Saccharomyces cerevisiae serve as small regulatory RNAs that inhibit mRNA levels via long (13–15 nt) statistically improbable stretches of (near) perfect complementarity to mRNA coding regions. The functions of fitRNAs are both constitutive and inducible because genomic deletion or inducible overexpression of tRNAIle introns led to corresponding increases or decreases in levels of complementary mRNAs. Remarkably, although tRNA introns are usually rapidly degraded, fitRNATrp selectively accumulates following oxidative stress, and target mRNA levels decrease. Thus, fitRNAs serve as gene regulators that fine-tune basal mRNA expression and alter the network of mRNAs that respond to oxidative stress.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.