Uric acid signal transduction enhancement through the electrical wiring of urate oxidase with copper Schiff base complex and reduced graphene oxide

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-02-11 DOI:10.1016/j.electacta.2025.145837
Teboho N. Moeketse, Priscilla G. Baker, Peter R. Makgwane
{"title":"Uric acid signal transduction enhancement through the electrical wiring of urate oxidase with copper Schiff base complex and reduced graphene oxide","authors":"Teboho N. Moeketse, Priscilla G. Baker, Peter R. Makgwane","doi":"10.1016/j.electacta.2025.145837","DOIUrl":null,"url":null,"abstract":"Uric acid (UA) is an important antioxidant biomolecule and disease biomarker in body fluids such as urine, sweat, serum, and saliva. In this paper, we developed an electrochemical biosensor to enhance UA signals using glassy carbon electrodes (GCEs) modified with graphene oxide, copper Schiff base complex and uricase enzyme. The reduced graphene oxide modified sensor took the lead by enhancing the UA signal response when coupled to Schiff base complex modified electrodes. The uricase enzyme biosensor yielded an extended linear range due to its catalytic effect on the UA oxidation process. The development of the sensors involved a step-by-step evaluation of the sensor performance using scanning mode and fixed potential mode electrochemistry, as well as spectroscopic and microscopic techniques. Square wave voltammetry in particular reported UA signal response in the linear range was 12 µM to 167+ µM, and LOD was in the range of 0.26 – 2.54 µM for UA sensors. This information is valuable for sensor application in human biofluids where UA concentrations may manifest up to 150-450 µM.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"13 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145837","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Uric acid (UA) is an important antioxidant biomolecule and disease biomarker in body fluids such as urine, sweat, serum, and saliva. In this paper, we developed an electrochemical biosensor to enhance UA signals using glassy carbon electrodes (GCEs) modified with graphene oxide, copper Schiff base complex and uricase enzyme. The reduced graphene oxide modified sensor took the lead by enhancing the UA signal response when coupled to Schiff base complex modified electrodes. The uricase enzyme biosensor yielded an extended linear range due to its catalytic effect on the UA oxidation process. The development of the sensors involved a step-by-step evaluation of the sensor performance using scanning mode and fixed potential mode electrochemistry, as well as spectroscopic and microscopic techniques. Square wave voltammetry in particular reported UA signal response in the linear range was 12 µM to 167+ µM, and LOD was in the range of 0.26 – 2.54 µM for UA sensors. This information is valuable for sensor application in human biofluids where UA concentrations may manifest up to 150-450 µM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Electrochemical Decarboxylative Oxidation of Carboxylic Acid Mixtures on Boron Doped Diamond Electrodes Lithium-induced defect centers in nanorod-shaped zinc oxide for supercapacitor applications Two-Dimensional MXene Based Anodic Slurry Electrodes for Vanadium Redox Flow Batteries Advanced electrocatalyst for OER by laser treatment of BaCo-oxide powders Operation condition dependent degradation effects of Li-rich layered oxide/graphite-SiOx pouch-type batteries: An in-situ and ex-situ analyses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1