High-power-efficiency and ultra-long-lifetime white OLEDs empowered by robust blue multi-resonance TADF emitters

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-02-11 DOI:10.1038/s41377-025-01750-z
Guohao Chen, Jingsheng Miao, Xingyu Huang, Zhenghao Zhang, Zhuixing Xue, Manli Huang, Nengquan Li, Xiaosong Cao, Yang Zou, Chuluo Yang
{"title":"High-power-efficiency and ultra-long-lifetime white OLEDs empowered by robust blue multi-resonance TADF emitters","authors":"Guohao Chen, Jingsheng Miao, Xingyu Huang, Zhenghao Zhang, Zhuixing Xue, Manli Huang, Nengquan Li, Xiaosong Cao, Yang Zou, Chuluo Yang","doi":"10.1038/s41377-025-01750-z","DOIUrl":null,"url":null,"abstract":"<p>White organic light-emitting diodes (WOLEDs) show very promising as next-generation light-sources, but achieving high power efficiency (PE) and long operational lifetime remains challenging because of the lack of stable blue emitters that can harvest all triplet (T<sub>1</sub>) excitons for light emission. Herein, we propose integrating stable azure multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters into tri-color hybrid WOLEDs to tackle these issues. By meticulously selecting MR-TADF emitters and precisely tuning the exciton recombination zone, the optimized tri-color devices based on BCzBN-3B achieve color-stable white light emission with maximum external quantum efficiency (EQE<sub>max</sub>) and maximum PE (PE<sub>max</sub>) of 34.4% and 101.8 lm W<sup>−1</sup>, respectively. Furthermore, the LT<sub>90</sub>, defined as the time for the luminance to drop to 90% of its initial value at 1000 cd m<sup>−2</sup>, reaches 761 h. In addition, a hybrid WOLED with deep blue emitter developed using our strategy achieves a high color rendering index of 88 and an EQE<sub>max</sub> of 30.6%, further demonstrating the versatility and effectiveness of our approach. The record-breaking efficiency and ultra-long lifetime underscore the success of hybrid white-light devices by incorporating robust blue MR-TADF emitters. These advancements open new avenues for commercialization of hybrid WOLEDs, presenting promising solutions for energy-efficient lighting and display technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"13 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01750-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

White organic light-emitting diodes (WOLEDs) show very promising as next-generation light-sources, but achieving high power efficiency (PE) and long operational lifetime remains challenging because of the lack of stable blue emitters that can harvest all triplet (T1) excitons for light emission. Herein, we propose integrating stable azure multi-resonance thermally activated delayed fluorescent (MR-TADF) emitters into tri-color hybrid WOLEDs to tackle these issues. By meticulously selecting MR-TADF emitters and precisely tuning the exciton recombination zone, the optimized tri-color devices based on BCzBN-3B achieve color-stable white light emission with maximum external quantum efficiency (EQEmax) and maximum PE (PEmax) of 34.4% and 101.8 lm W−1, respectively. Furthermore, the LT90, defined as the time for the luminance to drop to 90% of its initial value at 1000 cd m−2, reaches 761 h. In addition, a hybrid WOLED with deep blue emitter developed using our strategy achieves a high color rendering index of 88 and an EQEmax of 30.6%, further demonstrating the versatility and effectiveness of our approach. The record-breaking efficiency and ultra-long lifetime underscore the success of hybrid white-light devices by incorporating robust blue MR-TADF emitters. These advancements open new avenues for commercialization of hybrid WOLEDs, presenting promising solutions for energy-efficient lighting and display technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
In vivo surface-enhanced Raman scattering techniques: nanoprobes, instrumentation, and applications Shaping exciton polarization dynamics in 2D semiconductors by tailored ultrafast pulses High-power-efficiency and ultra-long-lifetime white OLEDs empowered by robust blue multi-resonance TADF emitters Imaging flow cytometry with a real-time throughput beyond 1,000,000 events per second High-fidelity light-field display with enhanced information utilization by modulating chrominance and luminance separately
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1