Planetary nebulae of the Large Magellanic Cloud

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2025-02-11 DOI:10.1051/0004-6361/202452188
P. Ventura, S. Tosi, D. A. García-Hernández, F. Dell’Agli, D. Kamath, L. Stanghellini, S. Bianchi, M. Tailo, M. A. Gómez-Muñoz
{"title":"Planetary nebulae of the Large Magellanic Cloud","authors":"P. Ventura, S. Tosi, D. A. García-Hernández, F. Dell’Agli, D. Kamath, L. Stanghellini, S. Bianchi, M. Tailo, M. A. Gómez-Muñoz","doi":"10.1051/0004-6361/202452188","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> The study of planetary nebulae (PNe) offers the opportunity to evaluate the efficiency of the dust production mechanism during the very late asymptotic giant branch (AGB) phases, which allows us to assess the role played by AGB stars as dust manufacturers.<i>Aims.<i/> We studied the relationship between the properties of PNe, particularly the gas and dust content, and the mass and metallicity of the progenitor stars to understand how dust production works in the late AGB phases and to shed new light on the physical processes the stars and the material in their surroundings are subject to in the period between the departure from the AGB and the start of the PN phase.<i>Methods.<i/> We considered a sample of nine PNe in the Large Magellanic Cloud, seven of which are characterised by the presence of carbonaceous dust and the remaining two the presence of silicates. For these stars, we estimated the masses and the metallicity of their progenitor stars. We combined results from stellar evolution and dust formation modelling with results from analyses of the spectral energy distribution to determine the relation between the dust and gas mass of the PNe considered and the mass and metallicity of the progenitors.<i>Results.<i/> The physical properties of carbon-rich PNe are influenced by the mass of the progenitor star. Specifically, the dust-to-gas ratio in the nebula increases from 5 × 10<sup>−4<sup/> to 6 × 10<sup>−3<sup/> as the progenitor star’s mass increases from approximately 0.9–2 M<sub>⊙<sub/>. This change is partly influenced by the effective temperature of the PNe, and it occurs because higher-mass carbon stars are more efficient at producing dust. Consequently, as the progenitor’s mass increases, the gas mass of the PN decreases since the larger amounts of dust lead to greater effects from radiation pressure, which pushes the gas outwards. No meaningful conclusions can be drawn from the study of the PNe with silicate-type dust, because the subsample comprises two PNe only, one of which is almost dust-free.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":"4 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202452188","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. The study of planetary nebulae (PNe) offers the opportunity to evaluate the efficiency of the dust production mechanism during the very late asymptotic giant branch (AGB) phases, which allows us to assess the role played by AGB stars as dust manufacturers.Aims. We studied the relationship between the properties of PNe, particularly the gas and dust content, and the mass and metallicity of the progenitor stars to understand how dust production works in the late AGB phases and to shed new light on the physical processes the stars and the material in their surroundings are subject to in the period between the departure from the AGB and the start of the PN phase.Methods. We considered a sample of nine PNe in the Large Magellanic Cloud, seven of which are characterised by the presence of carbonaceous dust and the remaining two the presence of silicates. For these stars, we estimated the masses and the metallicity of their progenitor stars. We combined results from stellar evolution and dust formation modelling with results from analyses of the spectral energy distribution to determine the relation between the dust and gas mass of the PNe considered and the mass and metallicity of the progenitors.Results. The physical properties of carbon-rich PNe are influenced by the mass of the progenitor star. Specifically, the dust-to-gas ratio in the nebula increases from 5 × 10−4 to 6 × 10−3 as the progenitor star’s mass increases from approximately 0.9–2 M. This change is partly influenced by the effective temperature of the PNe, and it occurs because higher-mass carbon stars are more efficient at producing dust. Consequently, as the progenitor’s mass increases, the gas mass of the PN decreases since the larger amounts of dust lead to greater effects from radiation pressure, which pushes the gas outwards. No meaningful conclusions can be drawn from the study of the PNe with silicate-type dust, because the subsample comprises two PNe only, one of which is almost dust-free.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Constraints on the properties of macroscopic transport in the Sun from combined lithium and beryllium depletion PANOPTICON: A novel deep learning model to detect single transit events with no prior data filtering in PLATO light curves Exploring quasar evolution with proximate molecular absorbers: Insights from the kinematics of highly ionized nitrogen⋆ Blue monsters at z > 10: Where all their dust has gone Gamma-ray flares from the jet of the blazar CTA 102 in 2016–2018
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1