Screening of estrogen receptor activity of per- and polyfluoroalkyl substances based on deep learning and in vivo assessment

IF 7.6 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Pollution Pub Date : 2025-02-11 DOI:10.1016/j.envpol.2025.125843
Xudi Pang, Miao Lu, Ying Yang, Huiming Cao, Yuzhen Sun, Zhen Zhou, Ling Wang, Yong Liang
{"title":"Screening of estrogen receptor activity of per- and polyfluoroalkyl substances based on deep learning and in vivo assessment","authors":"Xudi Pang,&nbsp;Miao Lu,&nbsp;Ying Yang,&nbsp;Huiming Cao,&nbsp;Yuzhen Sun,&nbsp;Zhen Zhou,&nbsp;Ling Wang,&nbsp;Yong Liang","doi":"10.1016/j.envpol.2025.125843","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past decades, exposure to per- and polyfluoroalkyl substances (PFAS), a group of synthetic chemicals notorious for their environmental persistence, has been shown to pose increased health risks. Despite that some PFAS were reported to have endocrine-disrupting toxicity in previous studies, accurate prediction models based on deep learning and the underlying structural characteristics related to the effect of molecular fluorination remain limited. To address these issues, we proposed a stacking deep learning architecture, GXDNet, that integrates molecular descriptors and molecular graphs to predict the estrogen receptor α (ERα) activities of compounds, enhancing the generalization ability compared to previous models. Subsequently, we screened the ERα activity of 10,067 PFAS molecules using the GXDNet model and identified potential ERα binders. The representative PFAS molecules with the top docking scores showed that the introduction of fluorinated alkane chains significantly increased the binding affinities of parent molecules with ERα, suggesting that the combination of phenol structural fragments and fluorinated alkane chains has a synergistic effect in improving the binding capacity of the ligands to ERα. The binding modes, SHapley Additive Explanations analysis, and attention map emphasized the importance of π-π stacking and hydrogen bonding interactions with the phenol group, while the fluorinated alkane chain enhanced the interaction with the hydrophobic amino acids of the active pocket. Experimental validation using zebrafish models further confirmed the ERα activity of the representative PFAS molecules. Overall, the current computational workflow is beneficial for the toxicological screening of emerging PFAS and accelerating the development of eco-friendly PFAS molecules, thereby mitigating the environmental and health risks associated with PFAS exposure.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"369 ","pages":"Article 125843"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749125002167","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decades, exposure to per- and polyfluoroalkyl substances (PFAS), a group of synthetic chemicals notorious for their environmental persistence, has been shown to pose increased health risks. Despite that some PFAS were reported to have endocrine-disrupting toxicity in previous studies, accurate prediction models based on deep learning and the underlying structural characteristics related to the effect of molecular fluorination remain limited. To address these issues, we proposed a stacking deep learning architecture, GXDNet, that integrates molecular descriptors and molecular graphs to predict the estrogen receptor α (ERα) activities of compounds, enhancing the generalization ability compared to previous models. Subsequently, we screened the ERα activity of 10,067 PFAS molecules using the GXDNet model and identified potential ERα binders. The representative PFAS molecules with the top docking scores showed that the introduction of fluorinated alkane chains significantly increased the binding affinities of parent molecules with ERα, suggesting that the combination of phenol structural fragments and fluorinated alkane chains has a synergistic effect in improving the binding capacity of the ligands to ERα. The binding modes, SHapley Additive Explanations analysis, and attention map emphasized the importance of π-π stacking and hydrogen bonding interactions with the phenol group, while the fluorinated alkane chain enhanced the interaction with the hydrophobic amino acids of the active pocket. Experimental validation using zebrafish models further confirmed the ERα activity of the representative PFAS molecules. Overall, the current computational workflow is beneficial for the toxicological screening of emerging PFAS and accelerating the development of eco-friendly PFAS molecules, thereby mitigating the environmental and health risks associated with PFAS exposure.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Pollution
Environmental Pollution 环境科学-环境科学
CiteScore
16.00
自引率
6.70%
发文量
2082
审稿时长
2.9 months
期刊介绍: Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health. Subject areas include, but are not limited to: • Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies; • Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change; • Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects; • Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects; • Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest; • New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.
期刊最新文献
The source-specific health risk and biological effect assessment of PAHs in Mactra veneriformis from the Bohai Sea and Yellow Sea Uncovering Soil Heavy Metal Pollution Hotspots and Influencing Mechanisms Through Machine Learning and Spatial Analysis Hepatotoxic Effect of DEP in Zebrafish is via Oxidative Stress, Genotoxicity, and Modulation of Molecular Pathways Sodium citrate-modification enhanced Fe3S4 for Cr(Ⅵ) removal from aqueous solution and soil Ozone and nitrogen dioxide mediated protein multiphase reactions under ultraviolet radiation conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1