AT-rich interaction domain 5A facilitates axon regeneration through docking protein 6 in the peripheral nervous system

IF 6.3 1区 医学 Q1 DERMATOLOGY Burns & Trauma Pub Date : 2025-02-10 DOI:10.1093/burnst/tkaf012
Zhixian Ren, Weixiao Huang, Xiaosong Gu, Lili Zhao
{"title":"AT-rich interaction domain 5A facilitates axon regeneration through docking protein 6 in the peripheral nervous system","authors":"Zhixian Ren, Weixiao Huang, Xiaosong Gu, Lili Zhao","doi":"10.1093/burnst/tkaf012","DOIUrl":null,"url":null,"abstract":"Background Peripheral nerves are easily damaged in accidental trauma due to their shallow location. Compared to the limited regeneration of the central nerve, the peripheral nerve has a certain regenerative ability after injury. However, this ability is not sufficient to achieve functional recovery. To increase the rate of regeneration after nerve injury, increasing regeneration-associated genes (RAGs) expression by transcription factors in neurons is necessary. Methods Sciatic nerve crush (SNC) animal models were generated in Sprague–Dawley (SD) rats. Bioinformatics analysis and real-time polymerase chain reaction (qPCR) were applied to detect genes expression; immunofluorescence staining and western blotting were applied to detect protein expression. The neurites outgrowth of cultured DRG neurons was performed to evaluate axon regeneration in vitro. Intrathecal injection of adeno-associated virus (AAV) was applied to suppress or overexpress the target in vivo. Following transfection, immunofluorescence staining of newborn axons’ marker (SCG10) in sciatic nerve after crush was used to evaluate the function of AT-rich interaction domain 5A (Arid5a) or docking protein 6 (Dok6) on axon regeneration. The binding between TF and the promoter of target genes was verified by chromatin immunoprecipitation (ChIP). Result has high activity in specific regenerating clusters and it accumulates specifically in the nucleus of DRG neurons after sciatic nerve injury. Upon Arid5a inhibition by siRNA, the outgrowth of neurites in vitro and the regeneration of axons in vivo were inhibited. In contrast, after Arid5a overexpression in rats, axon regeneration was significantly accelerated. In addition, Arid5a promotes the expression of Dok6 by binding to its promoter in DRG neurons. Suppression of Dok6 represses the neurites outgrowth of cultured DRG neurons, while its overexpression enhances axon regeneration in vivo. Furthermore, overexpression of Dok6 restored the impaired effect of Arid5a suppression on axon regeneration. Conclusions These findings indicate that axonal injury induced nucleus accumulation of Arid5a in neurons. Through Dok6, Arid5a accelerates axon regeneration of DRG neurons both in vitro and in vivo. This study enriched our understanding the function of Arid5a in the peripheral nervous system and the transcriptional regulatory network involved in neural regeneration.","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"21 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkaf012","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background Peripheral nerves are easily damaged in accidental trauma due to their shallow location. Compared to the limited regeneration of the central nerve, the peripheral nerve has a certain regenerative ability after injury. However, this ability is not sufficient to achieve functional recovery. To increase the rate of regeneration after nerve injury, increasing regeneration-associated genes (RAGs) expression by transcription factors in neurons is necessary. Methods Sciatic nerve crush (SNC) animal models were generated in Sprague–Dawley (SD) rats. Bioinformatics analysis and real-time polymerase chain reaction (qPCR) were applied to detect genes expression; immunofluorescence staining and western blotting were applied to detect protein expression. The neurites outgrowth of cultured DRG neurons was performed to evaluate axon regeneration in vitro. Intrathecal injection of adeno-associated virus (AAV) was applied to suppress or overexpress the target in vivo. Following transfection, immunofluorescence staining of newborn axons’ marker (SCG10) in sciatic nerve after crush was used to evaluate the function of AT-rich interaction domain 5A (Arid5a) or docking protein 6 (Dok6) on axon regeneration. The binding between TF and the promoter of target genes was verified by chromatin immunoprecipitation (ChIP). Result has high activity in specific regenerating clusters and it accumulates specifically in the nucleus of DRG neurons after sciatic nerve injury. Upon Arid5a inhibition by siRNA, the outgrowth of neurites in vitro and the regeneration of axons in vivo were inhibited. In contrast, after Arid5a overexpression in rats, axon regeneration was significantly accelerated. In addition, Arid5a promotes the expression of Dok6 by binding to its promoter in DRG neurons. Suppression of Dok6 represses the neurites outgrowth of cultured DRG neurons, while its overexpression enhances axon regeneration in vivo. Furthermore, overexpression of Dok6 restored the impaired effect of Arid5a suppression on axon regeneration. Conclusions These findings indicate that axonal injury induced nucleus accumulation of Arid5a in neurons. Through Dok6, Arid5a accelerates axon regeneration of DRG neurons both in vitro and in vivo. This study enriched our understanding the function of Arid5a in the peripheral nervous system and the transcriptional regulatory network involved in neural regeneration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
期刊最新文献
Roles of dendritic epidermal T cells in steady and different pathological states Engineered Extracellular Vesicles Derived from Pluripotent Stem Cells: A Cell-Free Approach to Regenerative Medicine AT-rich interaction domain 5A facilitates axon regeneration through docking protein 6 in the peripheral nervous system High early incidence of sepsis and its impact on organ dysfunction in burn trauma patients: a detailed and hypothesis generating study. Nanomedicine-based immunotherapy for tissue regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1