Wang Li, Xinxing Liu, Junjun Zhang, Heming Wang, Can Yuan, Shiju Lin, Chao Chen, Chen Shen, Jiang Tang, Jianmin Li, Tongle Bu, Sheng Wang, Yan Jiang, Xudong Xiao, Junbo Gong
{"title":"Reactive Plasma Deposition of ITO as an Efficient Buffer Layer for Inverted Perovskite Solar Cells","authors":"Wang Li, Xinxing Liu, Junjun Zhang, Heming Wang, Can Yuan, Shiju Lin, Chao Chen, Chen Shen, Jiang Tang, Jianmin Li, Tongle Bu, Sheng Wang, Yan Jiang, Xudong Xiao, Junbo Gong","doi":"10.1002/adma.202417094","DOIUrl":null,"url":null,"abstract":"In this study, the potential of reactive plasma deposition (RPD) is demonstrated for fabricating indium tin oxide (ITO) as an efficient buffer layer in inverted wide-bandgap perovskite solar cells (PSCs). This method results in a certified efficiency of 21.33% for wide-bandgap PSCs, demonstrating superior thermal stability and operational stability. The optimized devices achieve an impressive open-circuit voltage (<i>V<sub>OC</sub></i>) of 1.252 V with a bandgap of 1.67 eV, resulting in a remarkably low voltage deficit of 0.418 V, attributed to improved electron extraction, reduced interface defects, and suppressed surface recombination. The cells maintain over 90% of their initial efficiency after 1023 h of thermal aging at 88 °C. Furthermore, by integrating a highly efficient semi-transparent PSC with a CIGS bottom cell, a four-terminal tandem configuration is achieved with a total efficiency of 29.03%, representing one of the most efficient perovskite/CIGS tandem solar cells reported to date. This study provides valuable insights into the potential of RPD for improving the performance and scalability of inverted wide-bandgap PSCs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"4 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202417094","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the potential of reactive plasma deposition (RPD) is demonstrated for fabricating indium tin oxide (ITO) as an efficient buffer layer in inverted wide-bandgap perovskite solar cells (PSCs). This method results in a certified efficiency of 21.33% for wide-bandgap PSCs, demonstrating superior thermal stability and operational stability. The optimized devices achieve an impressive open-circuit voltage (VOC) of 1.252 V with a bandgap of 1.67 eV, resulting in a remarkably low voltage deficit of 0.418 V, attributed to improved electron extraction, reduced interface defects, and suppressed surface recombination. The cells maintain over 90% of their initial efficiency after 1023 h of thermal aging at 88 °C. Furthermore, by integrating a highly efficient semi-transparent PSC with a CIGS bottom cell, a four-terminal tandem configuration is achieved with a total efficiency of 29.03%, representing one of the most efficient perovskite/CIGS tandem solar cells reported to date. This study provides valuable insights into the potential of RPD for improving the performance and scalability of inverted wide-bandgap PSCs.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.