Menglai Lei , Linghai Meng , Yucheng Lin , Yujing Deng , Huanqing Chen , Lei Liu , Jianbo Fu , Shengxiang Jiang , Hua Zong , Xiaodong Hu
{"title":"Stealth dicing strategy for fabricating the cleavage mirror facets of semiconductor laser","authors":"Menglai Lei , Linghai Meng , Yucheng Lin , Yujing Deng , Huanqing Chen , Lei Liu , Jianbo Fu , Shengxiang Jiang , Hua Zong , Xiaodong Hu","doi":"10.1016/j.matdes.2025.113695","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the formation of cavity mirror facets of GaN-based laser diodes (LDs) using laser stealth dicing (SD) approach in skip-and-scribing mode and compared it with traditional diamond-tip edge-scribing method. As a result, high-quality LD cavity mirrors and non-degradative lasing properties were achieved with the SD scribe and cleavage method. The morphology measurement confirmed that the laser SD scribing effectively inhibited the formation of cavity mirror terrace-like structures, which usually appeared in traditional scribing methods, resulting in uniform and consistent cleavage bars. In a comparison experiment, A 1000-h burn-in test at 100 mA@40 °C was applied to TO56 packaged LDs to evaluate the effect of the new method on device performance. The results showed that the degradation rate of power in SD LDs is 7 % on average after aging. The average lifetime of SD LDs was 8083 h estimated by 1000-h of burn-in test, demonstrating the same stability and lifetime as the diamond-scribing LDs. The application of the novel laser SD scribe and cleavage solution in large-scale LD production was significant for improving yield and reducing cost.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"251 ","pages":"Article 113695"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127525001157","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We investigated the formation of cavity mirror facets of GaN-based laser diodes (LDs) using laser stealth dicing (SD) approach in skip-and-scribing mode and compared it with traditional diamond-tip edge-scribing method. As a result, high-quality LD cavity mirrors and non-degradative lasing properties were achieved with the SD scribe and cleavage method. The morphology measurement confirmed that the laser SD scribing effectively inhibited the formation of cavity mirror terrace-like structures, which usually appeared in traditional scribing methods, resulting in uniform and consistent cleavage bars. In a comparison experiment, A 1000-h burn-in test at 100 mA@40 °C was applied to TO56 packaged LDs to evaluate the effect of the new method on device performance. The results showed that the degradation rate of power in SD LDs is 7 % on average after aging. The average lifetime of SD LDs was 8083 h estimated by 1000-h of burn-in test, demonstrating the same stability and lifetime as the diamond-scribing LDs. The application of the novel laser SD scribe and cleavage solution in large-scale LD production was significant for improving yield and reducing cost.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.