Achieving over 28 % efficiency in inorganic halide perovskite Ca3AsI3: Optimization of electron transport layers via DFT, SCAPS-1D, and machine learning

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2025-02-10 DOI:10.1016/j.jpcs.2025.112622
Md Sharif Uddin , S.M Ashikur Rahman , Md Azizur Rahman , Sumon Mia , Mohammed M. Rahman , Moamen S. Refat
{"title":"Achieving over 28 % efficiency in inorganic halide perovskite Ca3AsI3: Optimization of electron transport layers via DFT, SCAPS-1D, and machine learning","authors":"Md Sharif Uddin ,&nbsp;S.M Ashikur Rahman ,&nbsp;Md Azizur Rahman ,&nbsp;Sumon Mia ,&nbsp;Mohammed M. Rahman ,&nbsp;Moamen S. Refat","doi":"10.1016/j.jpcs.2025.112622","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advancements in solar technology underscore the promise of Ca<sub>3</sub>AsI<sub>3</sub>, a novel cubic perovskite with remarkable physical properties, photovoltaic performance, and machine learning (ML)-assisted predictive potential. This study systematically explores the physical characteristics of Ca<sub>3</sub>AsI<sub>3</sub> using density functional theory (DFT) calculations. Thermodynamic stability, phonon properties, and tolerance factor evaluations confirm the high stability of Ca<sub>3</sub>AsI<sub>3</sub>, which is further validated by mechanical analyses and elastic property calculations. The bandgap analysis reveals a direct bandgap of 1.41 eV at the Γ point, confirming the semiconducting nature of Ca<sub>3</sub>AsI<sub>3</sub>, further supported by Partial Density of States (PDOS) results. Optical investigations demonstrate strong absorption across the visible to ultraviolet spectrum, as shown by dielectric functions, absorption coefficients, and conductivity measurements. These findings collectively highlight the significant potential of Ca<sub>3</sub>AsI<sub>3</sub> perovskite for advanced solar energy applications. The findings were integrated into the Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to assess the photovoltaic (PV) performance of various electron transport layers (ETLs), including Zinc sulfide (ZnS), Indium (III) sulfide (In<sub>2</sub>S<sub>3</sub>), Titanium dioxide (TiO<sub>2</sub>), and Tungsten disulfide (WS<sub>2</sub>). Optimization analysis focused on key parameters such as absorber thickness, ETL thickness, defect density, acceptor density, and interface defect density at the ETL/Ca<sub>3</sub>AsI<sub>3</sub> junction. Additionally, temperature effects, quantum efficiency (QE), and current density-voltage (J-V) characteristics were explored. Under ideal conditions, the Al/FTO/ETL (ZnS, In<sub>2</sub>S<sub>3</sub>, TiO<sub>2</sub>, WS<sub>2</sub>)/Ca<sub>3</sub>AsI<sub>3</sub>/Au structures demonstrated maximum efficiencies of 26.59 %, 19.70 %, 27.95 %, and 28.66 %, respectively, highlighting the promising potential of these configurations. Additionally, we applied a Ridge regressor-based ML model to predict the performance of Ca-perovskite solar cells (PSCs) with TiO<sub>2</sub> as the ETL. A dataset of 2187 data points from SCAPS-1D simulations was used, varying parameters such as absorber thickness, defect density, and TiO<sub>2</sub> properties. The model demonstrated high accuracy with an RMSE of 0.556 and an R-squared value of 0.6917, confirming its effectiveness in modeling Ca-PSC characteristics. These findings highlight the potential of Ca<sub>3</sub>AsI<sub>3</sub> as a promising material for optoelectronic applications.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"200 ","pages":"Article 112622"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725000733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in solar technology underscore the promise of Ca3AsI3, a novel cubic perovskite with remarkable physical properties, photovoltaic performance, and machine learning (ML)-assisted predictive potential. This study systematically explores the physical characteristics of Ca3AsI3 using density functional theory (DFT) calculations. Thermodynamic stability, phonon properties, and tolerance factor evaluations confirm the high stability of Ca3AsI3, which is further validated by mechanical analyses and elastic property calculations. The bandgap analysis reveals a direct bandgap of 1.41 eV at the Γ point, confirming the semiconducting nature of Ca3AsI3, further supported by Partial Density of States (PDOS) results. Optical investigations demonstrate strong absorption across the visible to ultraviolet spectrum, as shown by dielectric functions, absorption coefficients, and conductivity measurements. These findings collectively highlight the significant potential of Ca3AsI3 perovskite for advanced solar energy applications. The findings were integrated into the Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D) to assess the photovoltaic (PV) performance of various electron transport layers (ETLs), including Zinc sulfide (ZnS), Indium (III) sulfide (In2S3), Titanium dioxide (TiO2), and Tungsten disulfide (WS2). Optimization analysis focused on key parameters such as absorber thickness, ETL thickness, defect density, acceptor density, and interface defect density at the ETL/Ca3AsI3 junction. Additionally, temperature effects, quantum efficiency (QE), and current density-voltage (J-V) characteristics were explored. Under ideal conditions, the Al/FTO/ETL (ZnS, In2S3, TiO2, WS2)/Ca3AsI3/Au structures demonstrated maximum efficiencies of 26.59 %, 19.70 %, 27.95 %, and 28.66 %, respectively, highlighting the promising potential of these configurations. Additionally, we applied a Ridge regressor-based ML model to predict the performance of Ca-perovskite solar cells (PSCs) with TiO2 as the ETL. A dataset of 2187 data points from SCAPS-1D simulations was used, varying parameters such as absorber thickness, defect density, and TiO2 properties. The model demonstrated high accuracy with an RMSE of 0.556 and an R-squared value of 0.6917, confirming its effectiveness in modeling Ca-PSC characteristics. These findings highlight the potential of Ca3AsI3 as a promising material for optoelectronic applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
A DFT analysis of enhanced structural, mechanical, elastic tensor analysis, optical, electronic, thermoelectric and magnetic characteristics of X2ScHgCl6 (X=Cs, Rb) Metastable wurtzite CuInS2@C3N4 for supercapacitor application Catalytic effect of TiF3 on hydrogenation and dehydrogenation of Mg-based hydrogen storage alloy prepared by milling Achieving over 28 % efficiency in inorganic halide perovskite Ca3AsI3: Optimization of electron transport layers via DFT, SCAPS-1D, and machine learning Exploring the structural, elastic, electronic, optical properties and thermoelectric properties of Na2XGaF6 (X = In, or Tl) double perovskite: DFT study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1