On the computational power of energy-constrained mobile robots

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Information and Computation Pub Date : 2025-02-07 DOI:10.1016/j.ic.2025.105280
Kevin Buchin , Paola Flocchini , Irina Kostitsyna , Tom Peters , Nicola Santoro , Koichi Wada
{"title":"On the computational power of energy-constrained mobile robots","authors":"Kevin Buchin ,&nbsp;Paola Flocchini ,&nbsp;Irina Kostitsyna ,&nbsp;Tom Peters ,&nbsp;Nicola Santoro ,&nbsp;Koichi Wada","doi":"10.1016/j.ic.2025.105280","DOIUrl":null,"url":null,"abstract":"<div><div>We consider distributed systems of autonomous robots operating in the plane under synchronous <em>Look</em>-<em>Compute</em>-<em>Move</em> (<em>LCM</em>) cycles. Prior research on four distinct models assumes robots have unlimited energy. We remove this assumption and investigate systems where robots have limited but renewable energy, requiring inactivity for energy restoration.</div><div>We analyze the computational impact of this constraint, fully characterizing the relationship between energy-restricted and unrestricted robots. Surprisingly, we show that energy constraints can enhance computational power.</div><div>Additionally, we study how memory persistence and communication capabilities influence computation under energy constraints. By comparing the four models in this setting, we establish a complete characterization of their computational relationships.</div><div>A key insight is that energy-limited robots can be modeled as unlimited-energy robots controlled by an adversarial activation scheduler. This provides a novel equivalence framework for analyzing energy-constrained distributed systems.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"303 ","pages":"Article 105280"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540125000161","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider distributed systems of autonomous robots operating in the plane under synchronous Look-Compute-Move (LCM) cycles. Prior research on four distinct models assumes robots have unlimited energy. We remove this assumption and investigate systems where robots have limited but renewable energy, requiring inactivity for energy restoration.
We analyze the computational impact of this constraint, fully characterizing the relationship between energy-restricted and unrestricted robots. Surprisingly, we show that energy constraints can enhance computational power.
Additionally, we study how memory persistence and communication capabilities influence computation under energy constraints. By comparing the four models in this setting, we establish a complete characterization of their computational relationships.
A key insight is that energy-limited robots can be modeled as unlimited-energy robots controlled by an adversarial activation scheduler. This provides a novel equivalence framework for analyzing energy-constrained distributed systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
期刊最新文献
On the computational power of energy-constrained mobile robots On regular trees defined from unfoldings and coverings Consistent query answering in multi-relation databases The computational properties of P systems with mutative membrane structures Metric quantifiers and counting in timed logics and automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1