Codelivery of fibronectin and rapamycin via bioactive phosphorus dendrimers to ameliorate Alzheimer’s disease through macrophage autophagy, oxidative stress alleviation and polarization modulation

IF 10.9 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Today Pub Date : 2025-02-12 DOI:10.1016/j.nantod.2025.102664
Mengsi Zhan , Waicong Dai , Huxiao Sun , Yue Gao , Yu Zou , Regis Laurent , Xiyang Sun , Serge Mignani , Jean-Pierre Majoral , Mingwu Shen , Xiangyang Shi
{"title":"Codelivery of fibronectin and rapamycin via bioactive phosphorus dendrimers to ameliorate Alzheimer’s disease through macrophage autophagy, oxidative stress alleviation and polarization modulation","authors":"Mengsi Zhan ,&nbsp;Waicong Dai ,&nbsp;Huxiao Sun ,&nbsp;Yue Gao ,&nbsp;Yu Zou ,&nbsp;Regis Laurent ,&nbsp;Xiyang Sun ,&nbsp;Serge Mignani ,&nbsp;Jean-Pierre Majoral ,&nbsp;Mingwu Shen ,&nbsp;Xiangyang Shi","doi":"10.1016/j.nantod.2025.102664","DOIUrl":null,"url":null,"abstract":"<div><div>The primary pathogenic mechanisms underlying neurodegenerative diseases such as Alzheimer’s disease (AD) involve neuroinflammation, oxidative stress and abnormal protein aggregation, while the main challenges facing effective treatment are limited drug targeting capabilities and the blood-brain barrier (BBB) that impedes drug delivery to damaged brain regions. To address these challenges, a nanosystem based on complexes of bioactive <em>per se</em> phosphorus dendrimers (AK-76) with hydroxyl surface groups and protein fibronectin (FN) with both targeting and therapeutic functions that were physically loaded with rapamycin was developed. The resulting R@A/F (R for rapamycin, A for dendrimer, and F for FN) nanocomplexes (NCs) with a size of 187.3 nm demonstrate good stability, cytocompatibility and targeting performance. We show that the R@A/F NCs can cooperatively modulate microglia by lowering reactive oxygen species level, restoring mitochondrial membrane potential, enhancing autophagy, promoting microglia M2 polarization, and suppressing inflammatory cytokine secretion <em>in vitro</em>. With the assistance of dendrimer terminal hydroxyl groups, the R@A/F NCs can cross the BBB and improve cognitive and memory impairments in an AD mouse model by reducing brain inflammation, stimulating autophagy and facilitating Aβ protein degradation. Our study offers a versatile and highly adaptable nanoplatform for advancing the combined treatment of neuroinflammatory diseases, thus representing a significant step forward in addressing the challenges of AD therapy.</div></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"61 ","pages":"Article 102664"},"PeriodicalIF":10.9000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013225000362","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The primary pathogenic mechanisms underlying neurodegenerative diseases such as Alzheimer’s disease (AD) involve neuroinflammation, oxidative stress and abnormal protein aggregation, while the main challenges facing effective treatment are limited drug targeting capabilities and the blood-brain barrier (BBB) that impedes drug delivery to damaged brain regions. To address these challenges, a nanosystem based on complexes of bioactive per se phosphorus dendrimers (AK-76) with hydroxyl surface groups and protein fibronectin (FN) with both targeting and therapeutic functions that were physically loaded with rapamycin was developed. The resulting R@A/F (R for rapamycin, A for dendrimer, and F for FN) nanocomplexes (NCs) with a size of 187.3 nm demonstrate good stability, cytocompatibility and targeting performance. We show that the R@A/F NCs can cooperatively modulate microglia by lowering reactive oxygen species level, restoring mitochondrial membrane potential, enhancing autophagy, promoting microglia M2 polarization, and suppressing inflammatory cytokine secretion in vitro. With the assistance of dendrimer terminal hydroxyl groups, the R@A/F NCs can cross the BBB and improve cognitive and memory impairments in an AD mouse model by reducing brain inflammation, stimulating autophagy and facilitating Aβ protein degradation. Our study offers a versatile and highly adaptable nanoplatform for advancing the combined treatment of neuroinflammatory diseases, thus representing a significant step forward in addressing the challenges of AD therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纤维连接蛋白和雷帕霉素通过生物活性磷树状大分子共递送,通过巨噬细胞自噬、氧化应激缓解和极化调节改善阿尔茨海默病
神经退行性疾病如阿尔茨海默病(AD)的主要致病机制涉及神经炎症、氧化应激和异常蛋白聚集,而有效治疗面临的主要挑战是有限的药物靶向能力和血脑屏障(BBB)阻碍药物递送到受损的大脑区域。为了解决这些挑战,研究人员开发了一种基于具有羟基表面基团的生物活性磷树状大分子(AK-76)和蛋白纤维连接蛋白(FN)复合物的纳米系统,该复合物具有靶向和治疗功能,并在物理上负载了雷帕霉素。制备的纳米复合物(NCs)尺寸为187.3 nm,分别为R@A/F (R代表雷帕霉素,A代表树突大分子,F代表FN),具有良好的稳定性、细胞相容性和靶向性。我们发现R@A/F NCs可以通过降低活性氧水平、恢复线粒体膜电位、增强自噬、促进小胶质细胞M2极化和抑制炎症细胞因子分泌来协同调节小胶质细胞。在树突末端羟基的帮助下,R@A/F NCs可以穿过血脑屏障,通过减少脑炎症、刺激自噬和促进Aβ蛋白降解来改善AD小鼠模型的认知和记忆障碍。我们的研究为推进神经炎症性疾病的联合治疗提供了一个多功能和高度适应性的纳米平台,因此在解决AD治疗的挑战方面迈出了重要的一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Today
Nano Today 工程技术-材料科学:综合
CiteScore
21.50
自引率
3.40%
发文量
305
审稿时长
40 days
期刊介绍: Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.
期刊最新文献
Biomimetic nanomaterial-based strategies for spinal cord injury repair Manganese in metalloimmunotherapy: From molecular targets to material engineering and translational therapeutics Controlled epitaxy of perovskite van der waals heterostructures enables advanced self-powered broadband photodetectors Nanoengineered living macrophages as ultrasound imaging-trackable cell extinguishers inhibit pyroptosis in atherosclerotic plaque Inflammatory environment-responsive nanomicelles targeting CD44 alleviate allergic asthma by inhibiting the TLR4/MyD88-NFκB pathway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1