Unveiling the role of the PhoP master regulator in arsenite resistance through ackA downregulation in Lacticaseibacillus paracasei

IF 4.8 Q1 MICROBIOLOGY Current Research in Microbial Sciences Pub Date : 2025-01-01 DOI:10.1016/j.crmicr.2025.100357
Daniela Corrales , Cristina Alcántara , Dinoraz Vélez , Vicenta Devesa , Vicente Monedero , Manuel Zúñiga
{"title":"Unveiling the role of the PhoP master regulator in arsenite resistance through ackA downregulation in Lacticaseibacillus paracasei","authors":"Daniela Corrales ,&nbsp;Cristina Alcántara ,&nbsp;Dinoraz Vélez ,&nbsp;Vicenta Devesa ,&nbsp;Vicente Monedero ,&nbsp;Manuel Zúñiga","doi":"10.1016/j.crmicr.2025.100357","DOIUrl":null,"url":null,"abstract":"<div><div>In bacteria, the two-component system PhoPR plays an important role in regulating many genes related to phosphate uptake and metabolism. In <em>Lacticaseibacillus paracasei</em> inactivation of the response regulator PhoP results in increased resistance to arsenite [As(III)]. A comparative transcriptomic analysis revealed that the absence of PhoP has a strong effect on the transcriptome, with about 57.5 % of <em>Lc. paracasei</em> genes being differentially expressed, although only 92 of the upregulated genes and 23 of the downregulated genes reached a fold change greater than 2. Among them, the <em>phnDCEB</em> cluster, encoding a putative ABC phosphonate transporter and the acetate kinase encoding gene <em>ackA</em> (LCABL_01600) were downregulated tenfold and sevenfold, respectively. In vitro binding assays with selected PhoP-regulated genes showed that phosphorylation of PhoP stimulated its binding to the promoter regions of <em>pstS</em> (phosphate ABC transporter binding subunit), <em>phnD</em> and <em>glnA</em> glutamine synthetase) whereas no binding to the <em>poxL</em> (pyruvate oxidase) or <em>ackA</em> putative promoter regions was detected. This result identified for the first time three genes/operons belonging to the Pho regulon in a <em>Lactobacillaceae</em> species. Mapping of the reads obtained in the transcriptomic analysis revealed that transcription of <em>ackA</em> was severely diminished in the PhoP mutant after a hairpin structure located within the <em>ackA</em> coding region. Inactivation of <em>phnD</em> did not affect As(III) resistance whereas inactivation of <em>ackA</em> resulted in the same level of resistance as that observed in the PhoP mutant. These finding strongly suggests that PhoP mutant As(III) resistance is due to downregulation of <em>ackA</em>. Possible mechanisms of action are discussed.</div></div>","PeriodicalId":34305,"journal":{"name":"Current Research in Microbial Sciences","volume":"8 ","pages":"Article 100357"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Microbial Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666517425000197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In bacteria, the two-component system PhoPR plays an important role in regulating many genes related to phosphate uptake and metabolism. In Lacticaseibacillus paracasei inactivation of the response regulator PhoP results in increased resistance to arsenite [As(III)]. A comparative transcriptomic analysis revealed that the absence of PhoP has a strong effect on the transcriptome, with about 57.5 % of Lc. paracasei genes being differentially expressed, although only 92 of the upregulated genes and 23 of the downregulated genes reached a fold change greater than 2. Among them, the phnDCEB cluster, encoding a putative ABC phosphonate transporter and the acetate kinase encoding gene ackA (LCABL_01600) were downregulated tenfold and sevenfold, respectively. In vitro binding assays with selected PhoP-regulated genes showed that phosphorylation of PhoP stimulated its binding to the promoter regions of pstS (phosphate ABC transporter binding subunit), phnD and glnA glutamine synthetase) whereas no binding to the poxL (pyruvate oxidase) or ackA putative promoter regions was detected. This result identified for the first time three genes/operons belonging to the Pho regulon in a Lactobacillaceae species. Mapping of the reads obtained in the transcriptomic analysis revealed that transcription of ackA was severely diminished in the PhoP mutant after a hairpin structure located within the ackA coding region. Inactivation of phnD did not affect As(III) resistance whereas inactivation of ackA resulted in the same level of resistance as that observed in the PhoP mutant. These finding strongly suggests that PhoP mutant As(III) resistance is due to downregulation of ackA. Possible mechanisms of action are discussed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过下调副酸乳杆菌中的 ackA,揭示 PhoP 主调节因子在亚砷酸盐抗性中的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Microbial Sciences
Current Research in Microbial Sciences Immunology and Microbiology-Immunology and Microbiology (miscellaneous)
CiteScore
7.90
自引率
0.00%
发文量
81
审稿时长
66 days
期刊最新文献
Human microbiome in post-acute COVID-19 syndrome (PACS) Multifaceted virus-like particles: Navigating towards broadly effective influenza A virus vaccines Evaluation and identification of metabolites produced by Cytobacillus firmus in the interaction with Arabidopsis thaliana plants and their effect on Solanum lycopersicum Antibacterial potential and phytochemical analysis of two ethnomedicinally important plants The role of universal stress protein Usp1413 in meropenem adaptive resistance and environmental stress responses in Acinetobacter baumannii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1