Model-based policy optimization algorithms for feedback control of complex dynamic systems

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Chemical Engineering Pub Date : 2025-02-06 DOI:10.1016/j.compchemeng.2025.109032
Lucky E. Yerimah, Christian Jorgensen, B. Wayne Bequette
{"title":"Model-based policy optimization algorithms for feedback control of complex dynamic systems","authors":"Lucky E. Yerimah,&nbsp;Christian Jorgensen,&nbsp;B. Wayne Bequette","doi":"10.1016/j.compchemeng.2025.109032","DOIUrl":null,"url":null,"abstract":"<div><div>Model-free Reinforcement learning (RL) has been successfully used in benchmark systems such as the Cart-Pole, Inverted-Pendulum, and Robotic arms. However, model-free RL algorithms have several limitations, including large data requirements and handling of state constraints. Model-based and hybrid RL algorithms offer opportunities to tackle these limitations. This research investigated the application of a model-based policy optimization algorithm (MBPO) for feedback control of the Van de Vusse reaction and the Quadruple tank system. MBPO-trained agents suffer from inaccuracies of the learned model and the computational burden of the online optimization neural network models and policy parameters. We propose a modified model-based policy optimization (MMBPO) algorithm that uses linear dynamic system models. This minimizes a learned model’s inaccuracies and eliminates the computational requirements of training the neural network models. Simulation results show that model-based policy optimization algorithms can track the setpoints of the dynamic systems studied.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"195 ","pages":"Article 109032"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425000365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Model-free Reinforcement learning (RL) has been successfully used in benchmark systems such as the Cart-Pole, Inverted-Pendulum, and Robotic arms. However, model-free RL algorithms have several limitations, including large data requirements and handling of state constraints. Model-based and hybrid RL algorithms offer opportunities to tackle these limitations. This research investigated the application of a model-based policy optimization algorithm (MBPO) for feedback control of the Van de Vusse reaction and the Quadruple tank system. MBPO-trained agents suffer from inaccuracies of the learned model and the computational burden of the online optimization neural network models and policy parameters. We propose a modified model-based policy optimization (MMBPO) algorithm that uses linear dynamic system models. This minimizes a learned model’s inaccuracies and eliminates the computational requirements of training the neural network models. Simulation results show that model-based policy optimization algorithms can track the setpoints of the dynamic systems studied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
期刊最新文献
Editorial Board ChemBERTa embeddings and ensemble learning for prediction of density and melting point of deep eutectic solvents with hybrid features CPU and GPU based acceleration of high-dimensional population balance models via the vectorization and parallelization of multivariate aggregation and breakage integral terms Piecewise linear approximation using J1 compatible triangulations for efficient MILP representation Stochastic algorithm-based optimization using artificial intelligence/machine learning models for sorption enhanced steam methane reformer reactor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1