The Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times: A deep reinforcement learning approach

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY Transportation Research Part C-Emerging Technologies Pub Date : 2025-02-12 DOI:10.1016/j.trc.2025.105022
Dawei Chen , Christina Imdahl , David Lai , Tom Van Woensel
{"title":"The Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times: A deep reinforcement learning approach","authors":"Dawei Chen ,&nbsp;Christina Imdahl ,&nbsp;David Lai ,&nbsp;Tom Van Woensel","doi":"10.1016/j.trc.2025.105022","DOIUrl":null,"url":null,"abstract":"<div><div>We propose a novel approach using deep reinforcement learning to tackle the Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times (DTSP-TDS). The main goal is to dynamically plan the route with the shortest tour duration that visits all customers while considering the uncertainties and time-dependence of travel times. We employ a reinforcement learning approach to dynamically address the stochastic travel times to observe changing states and make decisions accordingly. Our reinforcement learning approach incorporates a Dynamic Graph Temporal Attention model with multi-head attention to dynamically extract information about stochastic travel times. Numerical studies with varying amounts of customers and time intervals are conducted to test its performance. Our proposed approach outperforms other benchmarks regarding solution quality and solving time, including the rolling horizon heuristics and other existing reinforcement learning approaches. In addition, we demonstrate the generalization capability of our approach in solving the various DTSP-TDS in various scenarios.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"172 ","pages":"Article 105022"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X25000269","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel approach using deep reinforcement learning to tackle the Dynamic Traveling Salesman Problem with Time-Dependent and Stochastic travel times (DTSP-TDS). The main goal is to dynamically plan the route with the shortest tour duration that visits all customers while considering the uncertainties and time-dependence of travel times. We employ a reinforcement learning approach to dynamically address the stochastic travel times to observe changing states and make decisions accordingly. Our reinforcement learning approach incorporates a Dynamic Graph Temporal Attention model with multi-head attention to dynamically extract information about stochastic travel times. Numerical studies with varying amounts of customers and time intervals are conducted to test its performance. Our proposed approach outperforms other benchmarks regarding solution quality and solving time, including the rolling horizon heuristics and other existing reinforcement learning approaches. In addition, we demonstrate the generalization capability of our approach in solving the various DTSP-TDS in various scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
期刊最新文献
Editorial Board Deep imitative reinforcement learning with gradient conflict-free for decision-making in autonomous vehicles Reliable deployment of automatic vehicle identification sensors for origin-destination matrix observation Efficient pedestrian and bicycle traffic flow estimation combining mobile-sourced data with route choice prediction Understanding the capacity of airport runway systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1