Organic matter content and its role in shale porosity development with maturity: Insights from Baltic Basin Silurian shales

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS International Journal of Coal Geology Pub Date : 2025-02-08 DOI:10.1016/j.coal.2025.104713
Grzegorz P. Lis , Tomasz Topór , Maria Mastalerz
{"title":"Organic matter content and its role in shale porosity development with maturity: Insights from Baltic Basin Silurian shales","authors":"Grzegorz P. Lis ,&nbsp;Tomasz Topór ,&nbsp;Maria Mastalerz","doi":"10.1016/j.coal.2025.104713","DOIUrl":null,"url":null,"abstract":"<div><div>Porosity, pore size distribution, and surface area are the main petrophysical characteristics indicative of gas storage capacity in shales. This paper investigates the influence of organic matter (OM) content on the evolution of these parameters at different stages of thermal maturity. Ninety-six samples of Silurian shales from the Baltic Basin ranging in maturity from immature to overmature were selected for this study. Porosity evolution was evaluated using N<sub>2</sub> and CO<sub>2</sub> low-pressure gas adsorption. At the immature stage, the samples with high OM content are characterized by lower porosity than the organic-matter-lean samples. At this stage, high OM content leads to the disruption of stiffer mineral framework; mixed organic-mineral framework is more prone to mechanical compaction than mineral framework. At the oil window stage, porosity of OM-rich samples declines due to pore-throat plugging and pore filling by bitumen. At the wet and dry gas generation stage, porosity of OM-rich samples increases mainly due to pore-throats unplugging. Absent or weak correlation between porosity and OM content at the wet and dry gas stages indicates poor development of OM-hosted secondary porosity. High contents of clay minerals in the studied samples fail to provide the rigid mineral framework and pressure shadows necessary for OM-hosted secondary porosity development.</div></div>","PeriodicalId":13864,"journal":{"name":"International Journal of Coal Geology","volume":"301 ","pages":"Article 104713"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Coal Geology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166516225000308","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Porosity, pore size distribution, and surface area are the main petrophysical characteristics indicative of gas storage capacity in shales. This paper investigates the influence of organic matter (OM) content on the evolution of these parameters at different stages of thermal maturity. Ninety-six samples of Silurian shales from the Baltic Basin ranging in maturity from immature to overmature were selected for this study. Porosity evolution was evaluated using N2 and CO2 low-pressure gas adsorption. At the immature stage, the samples with high OM content are characterized by lower porosity than the organic-matter-lean samples. At this stage, high OM content leads to the disruption of stiffer mineral framework; mixed organic-mineral framework is more prone to mechanical compaction than mineral framework. At the oil window stage, porosity of OM-rich samples declines due to pore-throat plugging and pore filling by bitumen. At the wet and dry gas generation stage, porosity of OM-rich samples increases mainly due to pore-throats unplugging. Absent or weak correlation between porosity and OM content at the wet and dry gas stages indicates poor development of OM-hosted secondary porosity. High contents of clay minerals in the studied samples fail to provide the rigid mineral framework and pressure shadows necessary for OM-hosted secondary porosity development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Coal Geology
International Journal of Coal Geology 工程技术-地球科学综合
CiteScore
11.00
自引率
14.30%
发文量
145
审稿时长
38 days
期刊介绍: The International Journal of Coal Geology deals with fundamental and applied aspects of the geology and petrology of coal, oil/gas source rocks and shale gas resources. The journal aims to advance the exploration, exploitation and utilization of these resources, and to stimulate environmental awareness as well as advancement of engineering for effective resource management.
期刊最新文献
Editorial Board Organic matter content and its role in shale porosity development with maturity: Insights from Baltic Basin Silurian shales Nanomechanical properties of anthracite and graphite: The role of heteroatom functional groups and structural evolution Intelligent identification of coal macerals using improved semi-supervised semantic segmentation methods Mechanisms of strain rate-dependent response of naturally fractured coal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1