Yijing Wang , Yaochuan Sun , Tielong Han, Zhi Zhao, Chao Hou, Yurong Li, Xiaoyan Song
{"title":"High-performance W-Cu composite with a layered hierarchical structure","authors":"Yijing Wang , Yaochuan Sun , Tielong Han, Zhi Zhao, Chao Hou, Yurong Li, Xiaoyan Song","doi":"10.1016/j.compstruct.2025.118954","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional tungsten-copper (W-Cu) composites typically exhibit a homogeneous distribution of tungsten phase. However, there usually exists an trade-off between their mechanical properties and conductivity, thereby significantly limiting their potential applications. In this study, a novel approach was proposed to concurrently enhance the compressive strength, wear resistance, and electrical conductivity by constructing a layered hierarchical structure consisting of alternating copper layers and nano W-Cu layers. Compared with the uniform-structured W-Cu, it was found that the layered hierarchical W-Cu had an enhanced stress partitioning of the tungsten phase and a more concentrated distribution of current density in the copper layer. This resulted in improvements in both strength and conductivity. Furthermore, the development of a homogeneous oxide mixture layer on the wear scar surface contributes to a reduction in friction coefficient. When combined with the exceptional strength of the nanostructured W-Cu layer, the wear resistance of the layered hierarchical W-Cu was enhanced. This study highlights the pivotal role of multilevel structural design in development of high-performance bimetallic composites.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"357 ","pages":"Article 118954"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325001199","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional tungsten-copper (W-Cu) composites typically exhibit a homogeneous distribution of tungsten phase. However, there usually exists an trade-off between their mechanical properties and conductivity, thereby significantly limiting their potential applications. In this study, a novel approach was proposed to concurrently enhance the compressive strength, wear resistance, and electrical conductivity by constructing a layered hierarchical structure consisting of alternating copper layers and nano W-Cu layers. Compared with the uniform-structured W-Cu, it was found that the layered hierarchical W-Cu had an enhanced stress partitioning of the tungsten phase and a more concentrated distribution of current density in the copper layer. This resulted in improvements in both strength and conductivity. Furthermore, the development of a homogeneous oxide mixture layer on the wear scar surface contributes to a reduction in friction coefficient. When combined with the exceptional strength of the nanostructured W-Cu layer, the wear resistance of the layered hierarchical W-Cu was enhanced. This study highlights the pivotal role of multilevel structural design in development of high-performance bimetallic composites.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.