Deflation constraints for global optimization of composite structures

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2025-02-10 DOI:10.1016/j.compstruct.2025.118916
Sankalp S. Bangera , Saullo G.P. Castro
{"title":"Deflation constraints for global optimization of composite structures","authors":"Sankalp S. Bangera ,&nbsp;Saullo G.P. Castro","doi":"10.1016/j.compstruct.2025.118916","DOIUrl":null,"url":null,"abstract":"<div><div>The study presents deflation constraints that enable a systematic exploration of the design space during the design of composite structures. By incorporating the deflation constraints, gradient-based optimizers become able to find multiple local optima over the design space. The study presents the idea behind deflation using a simple sine function, where all roots within an interval can be systematically found. Next, the novel deflation constraints are presented: hypersphere, hypercube and hypercuboid; consisting of a combination of Gaussian and sigmoid functions. As a test case, the developed constraints are applied to the optimization of a double-cosine function, where all the 13 minima points could be found with 24 deflation constraints. It is shown that a new optimum is encountered after each deflation constraint is added, with the optimization subsequently re-started from the same initial point, or resumed from the last found minimum, being the latter the recommended approach. The new deflation constraints are then used in heuristic-based direct search methods, where a genetic algorithm optimizer is able to find new optimum individuals for straight-fiber composites. Lastly, variable-stiffness composites were designed with the deflation constraints applied to the multimodal optimization problem of recovering fiber orientations from a set of optimum lamination parameters.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"357 ","pages":"Article 118916"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822325000819","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The study presents deflation constraints that enable a systematic exploration of the design space during the design of composite structures. By incorporating the deflation constraints, gradient-based optimizers become able to find multiple local optima over the design space. The study presents the idea behind deflation using a simple sine function, where all roots within an interval can be systematically found. Next, the novel deflation constraints are presented: hypersphere, hypercube and hypercuboid; consisting of a combination of Gaussian and sigmoid functions. As a test case, the developed constraints are applied to the optimization of a double-cosine function, where all the 13 minima points could be found with 24 deflation constraints. It is shown that a new optimum is encountered after each deflation constraint is added, with the optimization subsequently re-started from the same initial point, or resumed from the last found minimum, being the latter the recommended approach. The new deflation constraints are then used in heuristic-based direct search methods, where a genetic algorithm optimizer is able to find new optimum individuals for straight-fiber composites. Lastly, variable-stiffness composites were designed with the deflation constraints applied to the multimodal optimization problem of recovering fiber orientations from a set of optimum lamination parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Deflation constraints for global optimization of composite structures Lightweight design of tensegrity Michell truss subject to cantilever loads Isogeometric topology optimization for innovative designs of the reinforced TPMS unit cells with curvy stiffeners using T-splines Kresling origami structure: Mechanical and aerodynamic drag characteristics Lightweight designs of simply supported tensegrity structures and their applications to bridges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1